011-40705070  or  
Call me
Download our Mobile App
Select Board & Class
  • Select Board
  • Select Class
Cheral Khandediya from St. Aloysius High school , asked a question
Subject: Math , asked on 9/2/11

IF FROM ANY POINT ON THE COMMON CHORD OF TWO INTERSECTING CIRCLES,TANGENTS BE DRAWN TO THE CIRCLES PROVE THAT THEY ARE CONGRUENT.....

 

Ref.10th R.D. Sharma cbse mathematics book, lesson 11(circles), exercise 11.2 question no.3

plz ans..

EXPERT ANSWER

gopal.mohanty... ,Meritnation Expert added an answer
Answered on 11/2/11

Hi Cheral!
 
In order to prove your question we will use one property. It can be stated as Let PT be a tangent to the circle from an exterior point P and a secant to the circle through P intersects the circle at points A and B where T is a point on the circle, then PT2 = PA.PB. First of all I will prove this and use it to prove your question. 
 
Let PT be a tangent to the circle from an exterior point P and a secant to the circle through P intersects the circle at points A and B where T is a point on the circle

 
Using Pythagoras theorem for ∆OPT
OT2 + PT2 = OP2
r 2 + PT2 = r 2 + PA.PB  [using (2)]
⇒PT2 = PA.PB    … (3)
Now, I will use this result to prove your question.
The information provided by you is represented diagrammatically as
Here, the circles intersect at point X and Y. A is a point on the line joining the points X and Y. AM and AN are the tangents drawn to the circles
You need to prove AM = AN
Using (3), it can be said that
AM2 = AX.AY and AN2 = AX.AY
Thus, AM2 = AN2
⇒AM = AN
Hence, proved
 
Hope! This will help you.
Cheers!

This conversation is already closed by Expert

View More
Bhavye Sankhla , From Dav Public School , added an answer
Answered on 9/2/11

repeated posting wont yield answer!! :D

Cheral Khandediya , From St. Aloysius High School , added an answer
Answered on 12/2/11

thank u sir........  i posted this question many times but none of the students could answer it correctly............. either they were confused or regarded it as a wrong ques. or used AXY as a tangent........... once again thank u very much sir........

Cheral Khandediya , From St. Aloysius High School , added an answer
Answered on 12/2/11

thank u sir........  i posted this question many times but none of the students could answer it correctly............. either they were confused or regarded it as a wrong ques. or used AXY as a tangent........... once again thank u very much sir........

Cheral Khandediya , From St. Aloysius High School , added an answer
Answered on 12/2/11

thumbs up from me..............