IF WE CAN HEAR LOUD MUSIC AND NOISES THEN WHY WE CANNOT HEAR ULTRASONIC SOUNDS?

 

Hi,
@Rahool, Good effort, keep it up!
The audible range for a human being is 20Hz to 20000Hz. We can hear the noise or music which has frequency in between this range beyond 20000Hz and below 20Hz sounds we cannot hear. This is the reason we cannot hear ultrasounds i.e. frequency more than 20000Hz and infra sounds i.e. frequency less than 20Hz.
Hope, this answer satisfies your query.
Best wishes!!

  • 2

 Why are sounds different?

As you know, there are many different sounds. Fire alarms are loud, whispers are soft, sopranos sing high, tubas play low, every one of your friends has a different voice. The differences between sounds are caused byintensitypitch, and tone.

Intensity

Sound is a wave and waves have amplitude, or height. Amplitude is a measure of energy. The more energy a wave has, the higher its amplitude. As amplitude increases, intensity also increases. Intensity is the amount of energy a sound has over an area. The same sound is more intense if you hear it in a smaller area. In general, we call sounds with a higher intensity louder.

We are used to measuring the sounds we hear in loudness. The sound of your friend yelling is loud, while the sound of your own breathing is very soft. Loudness cannot be assigned a specific number, but intensity can. Intensity is measured in decibels.

The human ear is more sensitive to high sounds, so they may seem louder than a low noise of the same intensity. Decibels and intensity, however, do not depend on the ear. They can be measured with instruments. A whisper is about 10 decibels while thunder is 100 decibels. Listening to loud sounds, sounds with intensities above 85 decibels, may damage your ears. If a noise is loud enough, over 120 decibels, it can be painful to listen to. One hundred and twenty decibels is the threshold of pain

Sounds and their Decibels

Source of Sound
Decibels
Boeing 747
140
Civil Defense Siren
130
Jack Hammer
120
Rock Concert
110
Lawn Mower
100
Motorcycle
90
Garbage Disposal
80
Vacuum Cleaner
70
Normal Conversation
60
Light Traffic
50
Background Noise
40
Whisper
30
 

Pitch

Pitch helps us distinguish between low and high sounds. Imagine that a singer sings the same note twice, one an octave above the other. You can hear a difference between these two sounds. That is because their pitch is different.

Pitch depends on the frequency of a sound wave. Frequency is the number of wavelengths that fit into one unit of time. Remember that a wavelength is equal to one compression and one rarefaction. Even though the singer sang the same note, because the sounds had different frequencies, we heard them as different. Frequencies are measured in hertz. One hertz is equal to one cycle of compression and rarefaction per second. High sounds have high frequencies and low sounds have low frequencies. Thunder has a frequency of only 50 hertz, while a whistle can have a frequency of 1,000 hertz.

The human ear is able to hear frequencies of 20 to 20,000 hertz. Some animals can hear sounds at even higher frequencies. The reason we cannot hear dog whistles, while they can, is because the frequency of the whistle is too high be processed by our ears. Sounds that are too high for us to hear are called ultrasonic.

Ultrasonic waves have many uses. In nature, bats emit ultrasonic waves and listen to the echoes to help them know where walls are or to find prey. Captains of submarines and other boats use special machines that send out and receive ultrasonic waves. These waves help them guide their boats through the water and warn them when another boat is near.

Tone & Harmonics

Another difference you may have noticed between sounds is that some sounds are pleasant while others are unpleasant. A beginning violin player sounds very different than a violin player in a symphony, even if they are playing the same note. A violin also sounds different than a flute playing the same pitch. This is because they have a different tone, or sound quality. When a source vibrates, it actually vibrates with many frequencies at the same time. Each of those frequencies produces a wave. Sound quality depends on the combination of different frequencies of sound waves.

Imagine a guitar string tightly stretched. If we strum it, the energy from our finger is transferred to the string, causing it to vibrate. When the whole string vibrates, we hear the lowest pitch. This pitch is called thefundamental. Remember, the fundamental is really only one of many pitches that the string is producing. Parts of the string vibrating at frequencies higher than the fundamental are called overtones, while those vibrating in whole number multiples of the fundamental are called harmonics. A frequency of two times the fundamental will sound one octave higher and is called the second harmonic. A frequency four times the fundamental will sound two octaves higher and is called the fourth harmonic. Because the fundamental is one times itself, it is also called the first harmonic.

How is this knowledge useful in everyday life?

The more harmonics a sound has, the fuller the quality the sound is. All the different overtones of a sound help give it a unique pattern. This is especially true for a person’s voice. Everybody in the world has a different voice print, or pattern of overtones. Detectives can track a criminal if they know his voice print just as they would use his fingerprints. Voice identification equipment is used in advanced security systems to recognize and let in only one authorized person. Voice prints are also used in modern technology, for example, voice activated telephones. In the future, if you want the lights on, it may be more common to say, “Turn on lights,” than to flip a light switch.

What is the difference between music and noise?

Both music and noise are sounds, but how can we tell the difference? Some sounds, like construction work, are unpleasant. While others, such as your favorite band, are enjoyable to listen to. If this was the only way to tell the difference between noise and music, everyone’s opinion would be different. The sound of rain might be pleasant music to you, while the sound of your little brother practicing piano might be an unpleasant noise. To help classify sounds, there are three properties which a sound must have to be musical.

sound must have an identifiable pitch, a good or pleasing quality of tone, and repeating pattern or rhythm to be music. Noise on the other hand has no identifiable pitch, no pleasing tone, and no steady rhythm.

  • 1
What are you looking for?