011-40705070  or
Select Board & Class
• Select Board
• Select Class
Subject: Physics , asked on 18/2/15

# list of derivations in physics class 12 cbse chapterwise (for board exams).please hurry up!!!

Ray Optics:
Derivation of mirror formula,
Derivation of lens formula
Refraction at spherical surface
Lens Makers Formula
Refraction through Prism
Optical Instruments Derivation of formula for magnification

Electromagnetic Induction & Alternating Current:

Motional Emf
Deriving a formula for induced emf in a rotating coil (AC Generator)
Conceptual questions based on Eddy currents
mutual induction between two coils and two solenoids
Derivation of current voltage relationship for Pure R, pure L and pure C inductive and capacitative reactance calculation of impedance, current and voltage across each element
LCR Series - Phasor diagrams in all cases LR, LC circuits also can be done from LCR
Resonance
Average power in A.C. circuits pure R(not very high chance), pure L and pure C and LCR series

Transformer

Magnetism
Not many derivations in this chapter

Magnetic Effects of current:
Field at the center of a circular coil
Field at any point on the axis of circular coil
Working of cyclotron
Derivations related to Cyclotron
Field due to a toroid
field due to a solenoid
Torque on a current carrying coil placed in a magnetic field
Moving coil galvanometer

• 110
• 99
This image will do....

• 48
Some Imp derivations that u should know :  1. Work done (dipole electric field) *  2. Energy in capacitor **  3. Wheatstone bridge (meter bridge)***  4. Potentiometer****  5. Bio savarts law ( for infinite wire, finite wire, loops etc)****  6. Ampere law***  7 solenoid***  8. Cyclotron *****  9. Magnetic force on charge particle**  10. Moving coil galvanometer*****  11. Energy stored in inductor**  12. LC oscillator***  13. AC generator*  14. OPTICS lens maker formula***  15. Prism min. Angle of deviation***  16. Ydse experiment ***  17. Npn transistor (amplifier , switch etc)*****  18. Bohr model ( radius*** , velocity** , energy**** , time period *and Bohr magneton***)
• 23
Chapter 14 (Semiconductor electronics)
1.         Truth table, logic symbols and waveform examples for NOT, AND, OR, NAND and NOR gates
2.         npn transistor as a common emitter (CE) amplifier ; (current,voltage and power) gains of a CE amplifier
3.         Amplifier theory
4.         Transistor as a switch - 3 states of a transistor (cutoff, active and saturation) , switching action of a transistor
5.         Actions of (npn & pnp) transistors
6.         Current gains in a transistor (α & β) and the relation b/w them
7.         CE characteristics (input & output and their theory)
8.         Solar cell (construction, working, diagram, and V-I characteristic)
9.         Light emitting diode (LED) - (construction, working, diagram, and I-V characteristic)
10.      Photodiode (construction, working, diagrams and I-V characteristic)
11.       Cause of reverse breakdown of a junction diode - (Zener & avalanche) breakdowns ; their causes in brief and V-I characteristics in both cases
12.       Zener diode - construction, working, diagram
13.       Zener diode as a voltage regulator - working, diagram and graph b/w (input & output) voltages
14.       Junction diode as a (half-wave & full-wave) rectifier - working, diagrams and waveform graphs
15.       Working of a p-n junction in both types of (forward & reverse) biasing - diagrams and brief theory
16.       V-I characterisics of a p-n junction diode - forward-bias & reverse bias characteristic graphs and their brief theory
17.       p-n junction - working in brief, diagram
Liked my answer? Upvote it (this answer took around 6 hours of searching material and writing) and follow my account, for more such answers.. :)

• 15
Chapter 4 (Moving charges & Magnetism)
1.         Biot-Savart’s law (statement and derivation of formula)
2.         Magnetic Field (MF) due to a long straight current carrying conductor
3.         MF at center of circular current loop.
4.         MF along axis of circular current loop
5.         Ampere’s circuital law (its proofs for straight current carrying conductor & straight conductor)
6.         Calculation of MF inside a long straight solenoid
7.         MF due to a toroidal solenoid
8.         Moving coil galvanometer (MCG) (Principle, construction, theory and working)
9.         Figure of merit and sensitivity (current & voltage) of a MCG
10.      Conversion of MCG to Ammeter
11.       Conversion of MCG to Voltmeter
12.       Torque on current loop in uniform MF
13.       Force between 2 parallel current carrying wires
14.       Force on a current carrying conductor in MF
15.       Cyclotron (Principle, construction, theory, working and expression for max KE of accelerated ions)
16.       Work done by a magnetic force on a charged particle
17.       Velocity selector
Chapter 5 (Magnetism & Matter)
1.         MF of a bar magnet at an (axial & equatorial) point
2.         Torque on magnetic dipole in a uniform MF
3.         Potential energy of magnetic dipole
4.         Current loop as magnetic dipole
5.         Magnetic dipole moment of a revolving electron
Chapter 6 (Electromagnetic Induction)
1.         Mutual Induction (its coefficient and emf in terms of coefficient and rate of change of current w.r.t time)
2.         Mutual induction of 2 long solenoids
3.         Self Induction (its coefficient and emf in terms of coefficient and rate of change of current w.r.t time)
4.         Self inductance of a long solenoid
5.         Different methods of generating emf (and the respective emf expressions)
6.         Motional emf from Faraday’s law : Induced emf by change of area of coil linked with MF
7.         Motional emf from Lorentz force , Current induced in loop, power delivered by external force and power dissipated as Joule loss
• 12
Chapter 10 (Wave Optics)
1.         Laws of reflection on basis of Huygen’s wave theory
2.         Laws of refraction on basis of Huygen’s wave theory
3.         Refraction at a rarer medium
4.         Refraction of a plane wavefront through a prism, convex lens and a concave mirror
5.         Expression for intensity at any point in interference pattern ; and the corresponding conditions for (constructive & destructive) interference
6.         Expression for fringe width in Young’s double slit experiment (YDSE) ; and formulae for positions of (bright & dark) fringes
7.         Expression for ratio of intensities at maxima and minima in an interference pattern
8.         Diffraction at a single slit - Central maximum, calculation of path difference, positions of minima, positions of secondary maxima, intensity distribution curve
9.         (Angular & linear) width of central maximum, linear width of a secondary maximum
10.      Fresnel’s distance & Fresnel’s zone
11.       Resolving power of a microscope and telescope
12.       Doppler effect - expression for apparent frequency of light, (blue & red) shifts
Chapter 11 (Dual nature of radiation and matter)
1.         Determination of Planck’s constant and work function from graph of stopping potential vs frequency of incident radiation for a photosensitive material
Chapter 12 (Atoms)
1.         Distance of closest approach in Rutherford’s experiment, and the formula for radius of nucleus which is thus derived from it
2.         Bohr’s quantization condition of angular momentum
3.         Bohr’s theory of hydrogen atom - formulae for radii of permitted orbits, velocity of electrons in those orbits and energy of electron in those orbits
4.         Spectral series of hydrogen atom
Chapter 13 (Nuclei)
1.         Formula for nuclear density in terms of radius of a nucleus
2.         Expression for binding energy
4.         Relation b/w half life & decay constant
5.         Relation b/w mean life & decay constant
6.         Decay rate / activity of a radioactive sample

• 9
Chapter 7 (Alternating Current)
1.         A.C Generator (Principle, construction, working and expression for induced emf)
2.         Transformer (Principle, construction, working and theory)
3.         Mathematical treatment of LC oscillations
4.         Conservation of energy in LC oscillations
5.         Mechanical analogy for LC oscillations
6.         Power in A.C circuit
7.         Average power associated with (resistor, inductor and capacitor)
8.         Series LCR circuit (phasor diagrams, expression for impedance , resonance condition)
9.         Sharpness of resonance : Q-Factor
10.      Expression for Q-Factor
11.       AC circuit containing resistor only (and phasor diagram)
12.       AC circuit containing inductor only (and phasor diagram), phase relation b/w emf and current, inductive reactance
13.       AC circuit containing capacitor only (and phasor diagram), phase relation b/w emf and current, capacitive reactance
14.       Average value of AC over 1 complete cycle
15.       Relation b/w avg and peak values of AC
16.       Relation b/w effective and peak values of AC
17.       Relation b/w rms and peak values of alternating emf
Chapter 8 (Electromagnetic Waves)
1.         Maxwell’s modification of Ampere’s law
2.         Consistency of modified Ampere’s law
Chapter 9 (Ray optics & optical instruments)
1.         Cassegrain reflecting telescope (with diagram, magnification for final image formed at (infinity, least distance of distinct vision))
2.         Astronomical telescope : When final image is formed at (infinity (normal adjustment), least distance of distinct vision) -working, diagrams and magnifying powers in each case
3.         Compound microscope : When final image is formed at (infinity , least distance of distinct vision) - working, diagrams and magnifying powers in each case
4.         Simple microscope : When final image is formed at (infinity , least distance of distinct vision) -working, diagrams and magnifying powers in each case
5.         Formation of image by spherical lenses
6.         Thin lens formula for a convex lens when it forms a (real & virtual) image
7.         Thin lens formula for a concave lens
8.         Linear magnification produced by a lens (in terms of u & f ; v & f)
9.         Lens maker’s formula for a double convex lens , double concave lens
10.      Refraction at convex spherical surface
·         When object lies in rarer medium & image formed is real
·         When object lies in rarer medium & image formed is virtual
·         When object lies in denser medium & image formed is real
·         When object lies in denser medium & image formed is virtual
11. Refraction at concave spherical surface
·         When object lies in rarer medium
·         When object lies in denser medium
12. Derivation of mirror formula for a concave mirror when it forms a (real & virtual) image
13. Derivation of mirror formula for a convex mirror
14. Linear magnification produced by mirrors (in terms of u & f ; v & f)
15. Refraction through a rectangular glass slab
16. ^^ and expression for lateral displacement
17, Equivalent focal length and power of 2 thin lenses in contact.
• 7

Chapter 1 (Electric Charges and Fields)
1.         Coulomb’s law of Electric Force
2.         Coulomb’s law in vector form
3.         Principle of superposition of electrostatic forces
4.         Electric field (EF) due to a point charge
5.         EF due to a system of point charges
6.         EF at axial point of electric dipole
7.         EF at equatorial point of electric dipole
8.         Torque on a dipole in uniform EF
9.         Gauss’s theorem
10.      EF due to a uniformly charged infinite plane sheet
11.       EF of 2 positively charged parallel plates
12.       EF due to 2 oppositely charged parallel plates
13.       EF due to uniformly charged thin spherical shell
14.       EF of a line charge (from Coulomb’s law)
15.       EF due to an infinitely long straight charged wire
16.       Deduction of Coulomb’s law from Gauss’s theorem
Chapter 2 (Electrostatic Potential & Capacitance)
1.         Electric Potential (EP) due to a point charge.
2.         EP at an axial point of dipole
3.         EP at an equatorial point of dipole
4.         EP at any general point due to a dipole
5.         EP due to a group of point charges
6.         EP due to uniformly charged thin spherical shell
7.         Relation between EF & EP
8.         Potential Energy (PE) of system of 2 point charges
9.         PE of a system of 3 point charges
10.      PE of a system of N point charges
11.       PE of a single charge
12.       PE of system of 2 point charges in an external field
13.       PE of a dipole placed in an uniform electric field
14.       Parallel Plate Capacitor (Capacitance)
15.       Capacitors in series & parallel
16.       Energy stored in a capacitor
17.       Energy stored in series combination of capacitors
18.       Energy density of an EF
19.       Reduced field inside a dielectric & dielectric constant
20.      Electric susceptibility
21.       Relation between electric susceptibility & dielectric constant
22.      Capacitance of a parallel plate capacitor with a dielectric slab
23.      Collecting action of a hollow sphere
Chapter 3 (Current Electricity)
1.         Wheatstone Bridge (Working & Balanced condition)
2.         Meter Bridge (Principle, Construction & Working )
3.         Potentiometer (Principle, Construction)
4.         Applications of a potentiometer:
·
o    Comparison of emfs of 2 primary cells
o    Internal resistance of a primary cell
5. Resistances in series & parallel
6. Relation between potential difference (V), internal resistance (r) and emf (E)
7. Cells in series and parallel
8. Condition for max current from (series & parallel) combination of cells
9. Power consumed by (series & parallel) combination of appliances
10. Mobility of charge carriers
11. Relation between (b/w) electric current (I) and mobility for conductors
12. Relaxation time and drift velocity
13. Relation b/w (I) and drift velocity
14. Deduction of Ohm’s law (from drift velocity)
15. Ohm’s law in vector form

• 5
can u help me in solving numercial based on kirchof rule
• 3

here you can find short notes...

• 3
TOTAL 164 DERIVATION ARE THERE
• 3
Frndzz C D qstn again
U have to tell imp. Derivation not all derivation.
Coz all off u almost wrot D max derivation in which students r confus that which one is imp. So wrot only imp. Plz
• 2
• 2
bas rehne de
• 1
ncert is best
• 1
all the best do well
• 0
^ ;)
• 0
your welcome varun and sathayam...these are the only derivations for board exams varun ..i have not missed any derivation.
Thank you :-)
• 0
Ray Optics: Derivation of mirror formula, Derivation of lens formula Refraction at spherical surface Lens Makers Formula Refraction through Prism Optical Instruments Derivation of formula for magnification Electromagnetic Induction & Alternating Current: Motional Emf Deriving a formula for induced emf in a rotating coil (AC Generator) Conceptual questions based on Eddy currents mutual induction between two coils and two solenoids Derivation of current voltage relationship for Pure R, pure L and pure C inductive and capacitative reactance calculation of impedance, current and voltage across each element LCR Series - Phasor diagrams in all cases LR, LC circuits also can be done from LCR Resonance Average power in A.C. circuits pure R(not very high chance), pure L and pure C and LCR series Transformer Magnetism Not many derivations in this chapter Magnetic Effects of current: Field at the center of a circular coil Field at any point on the axis of circular coil Working of cyclotron Derivations related to Cyclotron Field due to a toroid field due to a solenoid Torque on a current carrying coil placed in a magnetic field Moving coil galvanometer
• 0
Thanks a lot siddhant jain....but just a small query...u happened to have missed out atoms and nuclei..is it tht they dont have derivations or is it tht u missed it???...plss tell..thanks
• -2
thanks
• -2
Quantisation of electric charge, Coulomb's law, Coulomb's law in vector vector in vector vector form, Coulomb's law with gravitational law, superposition principle, electric field due to a point charge, electric field due to system of charges, dipole moment of an electric dipole electric dipole an electric dipole, dipole moment at a point on the axial point on the axial line, dipole moment at a point point on the equatorial line, dipole in a uniform a uniform external field, electric flux, Gauss Theorem, proof, electrostatic potential due to a point charge, electrostatic potential due to a system of charges, electrostatic potential due to an electric dipole, electrostatic potential energy of a system of three point charges, potential energy in an external field field external field field, potential energy of a dipole in an external field field external field field external field field, capacitance, parallel plate capacitor, leakage of charge from a a from a a capacitor, effect of dielectric on parallel plate capacitor capacitor plate capacitor parallel plate capacitor capacitor plate capacitor capacitor, capacitors in parallel, capacitors in series, energy stored in a capacitor, common potential loss of energy in sharing charges charges sharing charges in sharing charges charges sharing charges charges, Ohm's law, effect of temperature on resistance, resistance of a conductor, Drift velocity, resistance of various materials, conductance and conductivity, resistors in series series, resistors in parallel, cells in series, cells in in parallel, mix grouping of cells, krichoff rules, metre Bridge, Potentiometer, biot-savart's law, magnetic field on the axis of a circular current carrying loop, ampere circuital law, solenoid, toroid, Lorentz Force, cyclotron, force on a current carrying conductor in a uniform magnetic field field, force between two parallel current carrying capacitor parallel current carrying capacitor, current carrying loop as as loop as as a magnetic dipole, moving coil galvanometer, conversions, forces between two magnetic poles, magnetic field strength at a point on on axial line of line point on on axial line of a bar magnet, magnetic field strength at a point on equatorial line of a of a on equatorial line of a of a point on equatorial line of a of a on equatorial line of a of a a point on equatorial line of a of a on equatorial line of a of a point on equatorial line of a of a on equatorial line of a of a equatorial line of a of a bar magnet, torque on a magnetic dipole, potential energy of magnetic dipole, magnetism and Gauss, the horizontal component of Earth's magnetic field, magnetic intensity, relation between relative magnetic permeability and magnetic permeability and magnetic magnetic permeability and magnetic permeability and magnetic susceptibility.
• -2
Thanks everyone!
• -2
no Varun ...i have mentioned all important derivation for board exams.

Thanks

• -2
For Numericals visit this link ( https://youtu.be/zYHzYbZJ8gg )
• -3
ththth
• -3
where are the rest of derrivations

• -3
For Numericals, visit : https://youtu.be/zYHzYbZJ8gg
• -3
list of derivations in physics class 12 cbse chapterwise (for board exams ) Ray Optics: Derivation of mirror formula, Derivation of lens formula Refraction at spherical surface Lens Makers Formula Refraction through Prism Optical Instruments Derivation of formula for magnification Electromagnetic Induction & Alternating Current: Motional Emf Deriving a formula for induced emf in a rotating coil (AC Generator) Conceptual questions based on Eddy currents mutual induction between two coils and two solenoids Derivation of current voltage relationship for Pure R, pure L and pure C inductive and capacitative reactance calculation of impedance, current and voltage across each element LCR Series - Phasor diagrams in all cases LR, LC circuits also can be done from LCR Resonance Average power in A.C. circuits pure R(not very high chance), pure L and pure C and LCR series Transformer Magnetism Not many derivations in this chapter Magnetic Effects of current: Field at the center of a circular coil Field at any point on the axis of circular coil Working of cyclotron Derivations related to Cyclotron Field due to a toroid field due to a solenoid Torque on a current carrying coil placed in a magnetic field Moving coil galvanometer
• -3
Some Derivations 1. Work done (dipole electric field) 2. Energy in capacitor 3. Wheatstone bridge (Meter Bridge) 4. Potentiometer 5. Bio savarts law (for infinite wire, finite wire, loops etc.) 6. Ampere law 7. Solenoid 8. Cyclotron 9. Magnetic force on charge particle 10. Moving coil galvanometer 11. Energy stored in inductor 12. LC oscillator 13. AC generator 14. OPTICS lens maker formula 15. Prism min. Angle of deviation 16. Young double slit experiment 17. NPN transistor (amplifier, switch etc.) 18. Bohr model (radius, velocity, energy, time period and Bohr magneton)
• -3
there are total 116 derivations my frnd.
• -4
Ray Optics:
Derivation of mirror formula,
Derivation of lens formula
Refraction at spherical surface
Lens Makers Formula
Refraction through Prism
Optical Instruments Derivation of formula for magnification

• -4
• -5
all question important....
• -5
And also definitions
• -8

ljlkn

• -12
lens makers formula
• -17

• -24