NCERT Solutions
Board Paper Solutions
Ask & Answer
School Talk
Login
GET APP
Login
Create Account
Popular
Latest
Drishti
Subject: Maths
, asked on 21/5/18
find tan inverse 0.999 by differentials method. please answer today only.
Answer
1
Vani Singh
Subject: Maths
, asked on 17/5/18
Find a for which function (a+2)x^3-3ax^2+9ax-1 decreases for all real values of x
Answer
1
Manasi Mujumdar
Subject: Maths
, asked on 16/5/18
Let fx=tan inverse gx gx is monitonicaly increasing for 0 to pi/2 then what is the interval for which fx is increasing?
Answer
1
Ankit Dhumale
Subject: Maths
, asked on 8/5/18
plz explain it to me how it is done
Answer
1
Suroj Dey
Subject: Maths
, asked on 7/5/18
Q. Solution to comprehension #9
Answer
0
Shri Ganesh
Subject: Maths
, asked on 20/4/18
(a.i)(ax i)+(a.j)(ax j) +(a.k)(ax k) is equal to
Answer
1
Athul Vincent
Subject: Maths
, asked on 20/4/18
Q.1. Prove that that the length of the chord joining the points of contact of tangents drawn from the point
$\left({x}_{1},{y}_{1}\right)is\frac{\sqrt{{{y}_{1}}^{2}+4{a}^{2}}\sqrt{{{y}_{1}}^{2}-4a{x}_{1}}}{a}$
Answer
1
Deepak Vyas
Subject: Maths
, asked on 18/4/18
Q56.solution pls.
Q.56. A balloon is pumped at the rate of 4
$c{m}^{3}$
per second. What is the rate at which its surface area increases when its radius is 4 cm ?
(A) 1
$c{m}^{2}$
/sec
(B) 2
$c{m}^{2}$
/sec
(C) 3
$c{m}^{2}$
/sec
(D) 4
$c{m}^{2}$
/sec
Answer
1
Pankaj Mandrawal
Subject: Maths
, asked on 27/3/18
Q). If the vertex of the parabola
$y=-{\left(x-a\right)}^{2}+b$
lies on the parabola
$y={x}^{3}$
and one of the x-intercepts of the parabola is 8, then what is the value of a if a > 0?
a) 1
b) 2
c) 4
d) 8
Answer
1
Suroj Dey
Subject: Maths
, asked on 26/3/18
Q. f(x) = -1+kx+k neither touches nor intersects f(x) = log x, then the
$mi{n}^{m}$
value of k
$\in $
is
$a.\left(\frac{1}{e},\frac{1}{\sqrt{e}}\right)b.\left(e,{e}^{2}\right)c.\left(\frac{1}{\sqrt{e}},e\right)d.noneofthese$
Answer
1
Sandra Saju
Subject: Maths
, asked on 23/3/18
Please provide answer for question no. 6 without providing any links and provide proper steps.
Q.6. Obtain all other zeroes of the polynomial
$4{x}^{4}+{x}^{3}-72{x}^{2}-18x$
, if two of its zeroes are
$3\sqrt{2}and-3\sqrt{2}$
.
Answer
2
Sandra Saju
Subject: Maths
, asked on 23/3/18
Please help this question no. 5 without providing links and show the proper steps.
Q.5. What must be subtracted from the polynomial
${x}^{4}-4{x}^{3}-39{x}^{2}-46x-2$
so that the resulting polynomial is exactly divisible by
${x}^{2}-5x+6$
.
Answer
1
Shanaya
Subject: Maths
, asked on 20/3/18
Q. Find the maximum and the minimum values
h(x) = x+1, x
$\in $
(-1,1)
Answer
3
N I S H I D H A .
Subject: Maths
, asked on 20/3/18
How to find such things? Like, it is negative or positive and all? :/ This pic is just a sample.. am unable to understand how we get (-)(-)(-) or (-)(+)(-) or (+)(+)(-) or (+)(+)(+) and all? :/ (P.S : Don't ask me to check study material coz am NEET member, so am unable to get access to maths)
Interval
Sign of f'(x)=12x(x+1)(x-2)
Nature of function
$\left(-\infty ,-1\right)$
(-)(-)(-)=(-) or <0
Strictly decreasing
(-1,0)
(-)(+)(-)=(+) or >0
Strictly increasing
(0,2)
(+)(+)(-)=(-) or <0
Strictly decreasing
(2,
$\infty $
)
(-)(+)(+)=(+) or >0
Strictly increasing
(a) The given function is strictly increasing in the intervals
$\left(-1,0\right)\cup \left(2,\infty \right)$
(b) The given function is strictly decreasing in the intervals
$\left(-\infty ,-1\right)\cup \left(0,2\right)$
Answer
1
Kurian J
Subject: Maths
, asked on 20/3/18
Plz fast....
Explain me this differentiation ?? fAST..:
Q.
$\therefore v=\frac{1}{3}{\mathrm{\pi r}}^{2}\mathrm{h}\phantom{\rule{0ex}{0ex}}\Rightarrow \mathrm{v}=\frac{1}{3}{\mathrm{\pi r}}^{2}\left[12+\sqrt{144-{\mathrm{r}}^{2}}\right]\phantom{\rule{0ex}{0ex}}\mathrm{On}\mathrm{differentiating}\mathrm{with}\mathrm{respect}\mathrm{to}\mathrm{r},\mathrm{we}\mathrm{have}.\phantom{\rule{0ex}{0ex}}\phantom{\rule{0ex}{0ex}}\frac{\mathrm{dv}}{\mathrm{dr}}=\frac{1}{3}\mathrm{\pi}\left(2\mathrm{r}\right)\left[12+\sqrt{144-{\mathrm{r}}^{2}}\right]+\frac{1}{3}\mathrm{\pi}\left({\mathrm{r}}^{2}\right)\left[\frac{-2\mathrm{r}}{2\sqrt{144-{\mathrm{r}}^{2}}}\right]\phantom{\rule{0ex}{0ex}}=\frac{2}{3}\mathrm{\pi}\left[12\mathrm{r}+\mathrm{r}\sqrt{144-{\mathrm{r}}^{2}}\right]-\frac{1}{3}\mathrm{\pi}\left[\frac{-{\mathrm{r}}^{3}}{\sqrt{144-{\mathrm{r}}^{2}}}\right]\phantom{\rule{0ex}{0ex}}$
Answer
1
1
2
3
4
5
Next
What are you looking for?

Q.56. A balloon is pumped at the rate of 4 $c{m}^{3}$ per second. What is the rate at which its surface area increases when its radius is 4 cm ?

(A) 1 $c{m}^{2}$/sec

(B) 2 $c{m}^{2}$/sec

(C) 3 $c{m}^{2}$/sec

(D) 4 $c{m}^{2}$/sec

a) 1

b) 2

c) 4

d) 8

Q. f(x) = -1+kx+k neither touches nor intersects f(x) = log x, then the $mi{n}^{m}$ value of k$\in $is

$a.\left(\frac{1}{e},\frac{1}{\sqrt{e}}\right)b.\left(e,{e}^{2}\right)c.\left(\frac{1}{\sqrt{e}},e\right)d.noneofthese$

Q.6. Obtain all other zeroes of the polynomial $4{x}^{4}+{x}^{3}-72{x}^{2}-18x$, if two of its zeroes are $3\sqrt{2}and-3\sqrt{2}$.

Q.5. What must be subtracted from the polynomial ${x}^{4}-4{x}^{3}-39{x}^{2}-46x-2$ so that the resulting polynomial is exactly divisible by ${x}^{2}-5x+6$.

h(x) = x+1, x$\in $ (-1,1)

$\left(-\infty ,-1\right)$

(-)(+)(+)=(+) or >0

(a) The given function is strictly increasing in the intervals $\left(-1,0\right)\cup \left(2,\infty \right)$

(b) The given function is strictly decreasing in the intervals $\left(-\infty ,-1\right)\cup \left(0,2\right)$

Explain me this differentiation ?? fAST..:

Q. $\therefore v=\frac{1}{3}{\mathrm{\pi r}}^{2}\mathrm{h}\phantom{\rule{0ex}{0ex}}\Rightarrow \mathrm{v}=\frac{1}{3}{\mathrm{\pi r}}^{2}\left[12+\sqrt{144-{\mathrm{r}}^{2}}\right]\phantom{\rule{0ex}{0ex}}\mathrm{On}\mathrm{differentiating}\mathrm{with}\mathrm{respect}\mathrm{to}\mathrm{r},\mathrm{we}\mathrm{have}.\phantom{\rule{0ex}{0ex}}\phantom{\rule{0ex}{0ex}}\frac{\mathrm{dv}}{\mathrm{dr}}=\frac{1}{3}\mathrm{\pi}\left(2\mathrm{r}\right)\left[12+\sqrt{144-{\mathrm{r}}^{2}}\right]+\frac{1}{3}\mathrm{\pi}\left({\mathrm{r}}^{2}\right)\left[\frac{-2\mathrm{r}}{2\sqrt{144-{\mathrm{r}}^{2}}}\right]\phantom{\rule{0ex}{0ex}}=\frac{2}{3}\mathrm{\pi}\left[12\mathrm{r}+\mathrm{r}\sqrt{144-{\mathrm{r}}^{2}}\right]-\frac{1}{3}\mathrm{\pi}\left[\frac{-{\mathrm{r}}^{3}}{\sqrt{144-{\mathrm{r}}^{2}}}\right]\phantom{\rule{0ex}{0ex}}$