NCERT Solutions
Board Paper Solutions
Ask & Answer
School Talk
Login
GET APP
Login
Create Account
Popular
Latest
Expert Answers
ALL
Monish Preetam
Subject: Math
, asked on 12/3/18
Find the multiplicative inverse of:
1. 2+i√3
2. 1-2i
3. (1+i√3)²
4. (3+4i)/(4-5i)
Answer
1
Vivek Bisht
Subject: Math
, asked on 4/3/18
Is 4pi/3 equal to -2pi/3 angle in the co-ordinate graph( Question asked with reference to answer given for maths ncert exercise 5.2 question 1)
Answer
1
Yagyam Aggarwal
Subject: Math
, asked on 28/2/18
67. The least integral value of λ for which
x
^{2}
– 4
x
+ λ > 0, ∀
x
∈R is
(1) 4 (2) 5 (3) 6 (4) 7
68. If
b > a
then the equation (
x – a
) (
x – b
) – 1 = 0 has
(1) Both roots in [
a, b
]
(2) Both roots in (–∞,
a
)
(3) Both roots in (
b
, ∞)
(4) One roots in (–∞,
a
) and other in (
b
, ∞)
Answer
1
Kanishk Sharma
Subject: Math
, asked on 27/2/18
ques20 and 22
Q20. If a + ib =
$\frac{{\left(x+i\right)}^{2}}{2{x}^{2}+1}$
, prove that a
^{2}
+ b
^{2}
=
$\frac{{\left({x}^{2}+1\right)}^{2}}{{\left(2{x}^{2}+1\right)}^{2}}$
.
Q22. If
$\alpha \mathrm{and}\beta $
are different complex numbers with |
$\mathrm{\beta}$
| = 1 , then find
$\left|\frac{\mathrm{\beta}-\mathrm{\alpha}}{1-\mathrm{\alpha \beta}}\right|$
.
Answer
1
Yagyam Aggarwal
Subject: Math
, asked on 26/2/18
Please answer the 63rd Q.
$\mathbf{63}\mathbf{.}\mathbf{}\mathrm{If}\mathrm{z}=4+3\mathrm{i},\mathrm{then}{\mathrm{z}}^{4}-16{\mathrm{z}}^{3}+114{\mathrm{z}}^{2}-400\mathrm{z}+630\mathrm{is}$
(1) 0 (2) 5
(3)
$-5$
(4) 625
Answer
1
Yagyam Aggarwal
Subject: Math
, asked on 25/2/18
If z=4+3i,then z
^{4}
-16z
^{3}
+144z
^{2}
-400z+630 is?
Answer
1
Dev
Subject: Math
, asked on 25/2/18
Q.2. Locate the points for which 3 < |z| < 4.
Answer
3
Noel George Cherian
Subject: Math
, asked on 21/2/18
Reduce [ 1/ 1−2i + 3 /1+i ][ 3+4i/ 2−4i] to standard form
Answer
1
Noel George Cherian
Subject: Math
, asked on 21/2/18
If a + ib = (1 – i)(2 – 3i)(3 – i), find the value of a 2 + b 2 .
Answer
1
Raj Aryan
Subject: Math
, asked on 13/2/18
Please answer fast!
$\mathbf{7}\mathbf{.}Ifziscomplexnumbersatisfyingtherelation\left|z+1\right|=z+2(1+i),thenzis\phantom{\rule{0ex}{0ex}}\phantom{\rule{0ex}{0ex}}\left(A\right)\frac{1}{2}\left(1+4i\right)\left(B\right)\frac{1}{2}\left(3+4i\right)\phantom{\rule{0ex}{0ex}}\left(C\right)\frac{1}{2}\left(1-4i\right)\left(D\right)noneofthese$
Answer
2
Jatin Pruthi
Subject: Math
, asked on 12/2/18
ANSWER THE FOLLOWING QUESTION:-
Q). If
${z}_{1}and{z}_{2}$
are 1 - i and - 2 + 4i respectively, find
$lm\left[\frac{{z}_{1}.{z}_{2}}{\overline{){z}_{1}}}\right]$
.
Answer
3
Nura Mohammad
Subject: Math
, asked on 8/2/18
Can we prove by taking modulus on both the sides?
${11}{.}{}Ifa+ib=\frac{{\left(x+i\right)}^{2}}{2{x}^{2}+1},provethat{a}^{2}+{b}^{2}=\frac{{\left({x}^{2}+1\right)}^{2}}{{\left(2{x}^{2}+1\right)}^{2}}.$
Answer
1
Nura Mohammad
Subject: Math
, asked on 8/2/18
9 th
Answer
1
Nura Mohammad
Subject: Math
, asked on 8/2/18
Can we take modulus on both the sides and solve?
Answer
1
Naga Nandhini
Subject: Math
, asked on 6/2/18
Find the square root of -5+12i
Answer
1
Prev
1
2
3
4
5
Next
What are you looking for?

1. 2+i√3

2. 1-2i

3. (1+i√3)²

4. (3+4i)/(4-5i)

x^{2}– 4x+ λ > 0, ∀x∈R is(1) 4 (2) 5 (3) 6 (4) 7

68. If

b > athen the equation (x – a) (x – b) – 1 = 0 has(1) Both roots in [

a, b](2) Both roots in (–∞,

a)(3) Both roots in (

b, ∞)(4) One roots in (–∞,

a) and other in (b, ∞)Q20. If a + ib = $\frac{{\left(x+i\right)}^{2}}{2{x}^{2}+1}$, prove that a

^{2}+ b^{2}= $\frac{{\left({x}^{2}+1\right)}^{2}}{{\left(2{x}^{2}+1\right)}^{2}}$.Q22. If $\alpha \mathrm{and}\beta $ are different complex numbers with |$\mathrm{\beta}$| = 1 , then find $\left|\frac{\mathrm{\beta}-\mathrm{\alpha}}{1-\mathrm{\alpha \beta}}\right|$.

$\mathbf{63}\mathbf{.}\mathbf{}\mathrm{If}\mathrm{z}=4+3\mathrm{i},\mathrm{then}{\mathrm{z}}^{4}-16{\mathrm{z}}^{3}+114{\mathrm{z}}^{2}-400\mathrm{z}+630\mathrm{is}$

(1) 0 (2) 5

(3) $-5$ (4) 625

^{4}-16z^{3}+144z^{2}-400z+630 is?$\mathbf{7}\mathbf{.}Ifziscomplexnumbersatisfyingtherelation\left|z+1\right|=z+2(1+i),thenzis\phantom{\rule{0ex}{0ex}}\phantom{\rule{0ex}{0ex}}\left(A\right)\frac{1}{2}\left(1+4i\right)\left(B\right)\frac{1}{2}\left(3+4i\right)\phantom{\rule{0ex}{0ex}}\left(C\right)\frac{1}{2}\left(1-4i\right)\left(D\right)noneofthese$

Q). If ${z}_{1}and{z}_{2}$ are 1 - i and - 2 + 4i respectively, find $lm\left[\frac{{z}_{1}.{z}_{2}}{\overline{){z}_{1}}}\right]$.

${11}{.}{}Ifa+ib=\frac{{\left(x+i\right)}^{2}}{2{x}^{2}+1},provethat{a}^{2}+{b}^{2}=\frac{{\left({x}^{2}+1\right)}^{2}}{{\left(2{x}^{2}+1\right)}^{2}}.$