NCERT Solutions
Board Paper Solutions
Ask & Answer
School Talk
Login
GET APP
Login
Create Account
Popular
Latest
Expert Answers
ALL
Rajib
Subject: Math
, asked on 8/12/17
Find ?Hf
0
for acetic acid, HC2H3O2, using the following thermochemical data.
HC2H3O2 (l) + 2 O2 (g) ? 2 CO2 (g) + 2 H2O (l) ?H = -875. kJ/mole
C (s, graphite) + O2 (g) ? CO2 (g) ?H = -394.51 kJ/mole
H2 (g) + 1/2 O2 (g) ? H2O (l) ?H = -285.8 kJ/moleFind ?Hf
0
for acetic acid, HC2H3O2, using the following thermochemical data.
HC2H3O2 (l) + 2 O2 (g) ? 2 CO2 (g) + 2 H2O (l) ?H = -875. kJ/mole
C (s, graphite) + O2 (g) ? CO2 (g) ?H = -394.51 kJ/mole
H2 (g) + 1/2 O2 (g) ? H2O (l) ?H = -285.8 kJ/mole
Answer
2
Priyanka
Subject: Math
, asked on 19/11/17
Solve this:
Q.
$x+2y\le 10,x+y\ge 1,x-y\le 0,x,y\ge 0$
.
Answer
1
Sree Harine Govindaraj
Subject: Math
, asked on 3/11/17
How had the expression become equal to 1? (Please view the attatched photo).
Answer
2
Alok Singh
Subject: Math
, asked on 24/10/17
Solve this :
20. Solve the inequality
$\left|\frac{2-3x}{4}\right|5.$
Answer
2
Aryan Felix
Subject: Math
, asked on 21/10/17
A robot is designed to move in a peculiar way and it can be set in motion by a microprocessor program. The program can be initiated by assigning a positive rational value to its variable n. The program directs the robot to move in the following way. As soon as the program is started, the robot starts from the point O, moves 2n metres northward and changes its direction by n° to the right. It then moves 2n metres forward and again changes its direction by n° to the right and continues in this manner till it reaches the starting point O, or till it covers a total distance of 1000 m, whichever happens first, and then it stops.
a. I assigned a value for n and started the program. If the robot finally came back to O and stopped, what is the total distance that it has covered?
1. 180 m
2. 360 m
3. 720 m
4. Cannot be determined.
b. For how many values of n in the intervals [1, 60] does the robot cover less than 1000 m, before it stops?
1. 19
2. 60
3. 355
4. Infinte
Answer
1
Tushar
Subject: Math
, asked on 10/10/17
Please solve question number 17
17. In the first four papers each of 100 marks Devansh got 95, 72, 73, 83 marks. If he wants an average of greater than or equal to 75 marks and less than 80 marks, find the range of marks he should score in the fifth paper.
Answer
1
Vasudevan
Subject: Math
, asked on 6/10/17
what is the difference between isupper and toupper function in c++.
please whoever knows pls help asp
Answer
1
Ranjan Shivam
Subject: Math
, asked on 29/9/17
solve it:
$\mathrm{Solve}\mathrm{for}\mathrm{x}\phantom{\rule{0ex}{0ex}}\left(\mathrm{a}\right)\left|\mathrm{x}-1\right|+\left|\mathrm{x}-3\right|=5\phantom{\rule{0ex}{0ex}}\left(\mathrm{b}\right)\left|\mathrm{x}\right|-\left|\mathrm{x}-2\right|=2$
Answer
1
Shivam Gupta
Subject: Math
, asked on 18/9/17
sir:
$\mathrm{Q}1\mathrm{If}\frac{3}{\mathrm{x}}2,\mathrm{then}\mathrm{x}\in \phantom{\rule{0ex}{0ex}}\mathrm{Choose}\mathrm{one}:\phantom{\rule{0ex}{0ex}}\circ \left(-\infty ,0\right)\cup \left(\frac{3}{2},\infty \right)\phantom{\rule{0ex}{0ex}}\circ \left(0,\frac{3}{2}\right)\phantom{\rule{0ex}{0ex}}\circ \left(-\infty ,\frac{3}{2}\right)\phantom{\rule{0ex}{0ex}}\circ \left(\frac{3}{2},\infty \right)\phantom{\rule{0ex}{0ex}}$
Answer
1
Shivam Gupta
Subject: Math
, asked on 18/9/17
Sir.
$Q.2If\frac{3x-2}{5x-3}\ge 3,thenx\in \phantom{\rule{0ex}{0ex}}\circ \left[\frac{7}{12},\frac{3}{5}\right]\phantom{\rule{0ex}{0ex}}\circ R-\left[\frac{7}{12},\frac{3}{5}\right]\phantom{\rule{0ex}{0ex}}\circ [\frac{7}{12},\frac{3}{5})\phantom{\rule{0ex}{0ex}}\circ (\frac{7}{12},\frac{3}{5}]$
Answer
1
Shivam Gupta
Subject: Math
, asked on 18/9/17
Sir:
$\mathrm{Q}.\mathrm{If}\frac{{\mathrm{x}}^{4}}{{\left(\mathrm{x}-2\right)}^{2}}0,\mathrm{then}\mathrm{x}\in \phantom{\rule{0ex}{0ex}}\mathrm{Choose}\mathrm{one}\phantom{\rule{0ex}{0ex}}\circ \mathrm{R}\phantom{\rule{0ex}{0ex}}\circ \mathrm{R}-\left\{2\right\}\phantom{\rule{0ex}{0ex}}\circ \left(0,2\right)\phantom{\rule{0ex}{0ex}}\circ \mathrm{R}-\left\{0,2\right\}$
Answer
1
Shivam Gupta
Subject: Math
, asked on 18/9/17
Q.4. If | x | < 4, then
$x\in $
(4,
$\infty $
)
(- 4, 4)
(-
$\infty $
, 4)
[- 4, 4]
Answer
3
Shivam Gupta
Subject: Math
, asked on 18/9/17
Q.5. If
$\left|x\right|\ge 5,thenx\in $
[- 5, 5]
[5,
$\infty $
]
R - [ -5, 5]
R - (- 5, 5)
Answer
1
Shivam Gupta
Subject: Math
, asked on 18/9/17
Q.6. For
$1\le x\le 5$
, then value of | 2x - 7 | is
[- 5, 3]
[0, 3]
[0, 5]
[- 5, 0]
Answer
1
Shivam Gupta
Subject: Math
, asked on 18/9/17
Q.7. If
$\left|x-3\right|\le 2$
, then
$x\in $
[1, 5]
[0, 5]
[- 5, 1]
[- 2, 2]
Answer
4
Prev
2
3
4
5
6
Next
What are you looking for?

0

for acetic acid, HC2H3O2, using the following thermochemical data.

HC2H3O2 (l) + 2 O2 (g) ? 2 CO2 (g) + 2 H2O (l) ?H = -875. kJ/mole

C (s, graphite) + O2 (g) ? CO2 (g) ?H = -394.51 kJ/mole

H2 (g) + 1/2 O2 (g) ? H2O (l) ?H = -285.8 kJ/moleFind ?Hf

0

for acetic acid, HC2H3O2, using the following thermochemical data.

HC2H3O2 (l) + 2 O2 (g) ? 2 CO2 (g) + 2 H2O (l) ?H = -875. kJ/mole

C (s, graphite) + O2 (g) ? CO2 (g) ?H = -394.51 kJ/mole

H2 (g) + 1/2 O2 (g) ? H2O (l) ?H = -285.8 kJ/mole

Q. $x+2y\le 10,x+y\ge 1,x-y\le 0,x,y\ge 0$ .

20. Solve the inequality $\left|\frac{2-3x}{4}\right|5.$

a. I assigned a value for n and started the program. If the robot finally came back to O and stopped, what is the total distance that it has covered?

1. 180 m

2. 360 m

3. 720 m

4. Cannot be determined.

b. For how many values of n in the intervals [1, 60] does the robot cover less than 1000 m, before it stops?

1. 19

2. 60

3. 355

4. Infinte

17. In the first four papers each of 100 marks Devansh got 95, 72, 73, 83 marks. If he wants an average of greater than or equal to 75 marks and less than 80 marks, find the range of marks he should score in the fifth paper.

please whoever knows pls help asp

$\mathrm{Solve}\mathrm{for}\mathrm{x}\phantom{\rule{0ex}{0ex}}\left(\mathrm{a}\right)\left|\mathrm{x}-1\right|+\left|\mathrm{x}-3\right|=5\phantom{\rule{0ex}{0ex}}\left(\mathrm{b}\right)\left|\mathrm{x}\right|-\left|\mathrm{x}-2\right|=2$

$\mathrm{Q}1\mathrm{If}\frac{3}{\mathrm{x}}2,\mathrm{then}\mathrm{x}\in \phantom{\rule{0ex}{0ex}}\mathrm{Choose}\mathrm{one}:\phantom{\rule{0ex}{0ex}}\circ \left(-\infty ,0\right)\cup \left(\frac{3}{2},\infty \right)\phantom{\rule{0ex}{0ex}}\circ \left(0,\frac{3}{2}\right)\phantom{\rule{0ex}{0ex}}\circ \left(-\infty ,\frac{3}{2}\right)\phantom{\rule{0ex}{0ex}}\circ \left(\frac{3}{2},\infty \right)\phantom{\rule{0ex}{0ex}}$

$Q.2If\frac{3x-2}{5x-3}\ge 3,thenx\in \phantom{\rule{0ex}{0ex}}\circ \left[\frac{7}{12},\frac{3}{5}\right]\phantom{\rule{0ex}{0ex}}\circ R-\left[\frac{7}{12},\frac{3}{5}\right]\phantom{\rule{0ex}{0ex}}\circ [\frac{7}{12},\frac{3}{5})\phantom{\rule{0ex}{0ex}}\circ (\frac{7}{12},\frac{3}{5}]$

$\mathrm{Q}.\mathrm{If}\frac{{\mathrm{x}}^{4}}{{\left(\mathrm{x}-2\right)}^{2}}0,\mathrm{then}\mathrm{x}\in \phantom{\rule{0ex}{0ex}}\mathrm{Choose}\mathrm{one}\phantom{\rule{0ex}{0ex}}\circ \mathrm{R}\phantom{\rule{0ex}{0ex}}\circ \mathrm{R}-\left\{2\right\}\phantom{\rule{0ex}{0ex}}\circ \left(0,2\right)\phantom{\rule{0ex}{0ex}}\circ \mathrm{R}-\left\{0,2\right\}$

(4, $\infty $)

(- 4, 4)

(- $\infty $, 4)

[- 4, 4]

[- 5, 5]

[5, $\infty $]

R - [ -5, 5]

R - (- 5, 5)

[- 5, 3]

[0, 3]

[0, 5]

[- 5, 0]

[1, 5]

[0, 5]

[- 5, 1]

[- 2, 2]