what is (a+b+c)whole square

sir how to solve quadratic inequalities by wavy curve method

Q Find the square root of the complex number 5 -12i.

if (1-i/1+i)^{500}=a+ib, find the values of a and b

prove that

cosA +cosB +cosC +cos(A+B+C) = 4cos((A+B) / 2)cos((B+C) / 2)cos((C+A) / 2)

Find the modulus and argument of 1 + 2 i / 1 - 3 i ???

if the ratio of the roots of the equation x^{2}+px+q=0 is equal to the ratio of the roots of the equation x^{2}+lx+m=0, prove that mp^{2}=ql^{2}

Express in polar form 1 + 2i/1-3i

If (x+iy)^1/3 =(a+ib),prove that (x/a+y/b)=4(a^2-b^2)?

find sqrt(1-i)

If (x + iy) = sqrt [(1+i)/(1-i)],

prove that : x^{2} + y^{2} = 1

if alpha and beta are 2 different complex numbers with |beta| = 1, then find |beta-alpha/1-bar alpha*beta|

If z =(x+iy) and w =( 1 - iz) / (z - 1) such that | w | = 1 then show that z is purely real .

pls solve this question.... if (1+2i)(2+3i)(3+4i)= x+iy.Show that x^2 +y^2 =1625.

if (x+iy)^{3} = u+iv, then show that u/x +v/y = 4(x^{2} - y^{2})

find the value of x and y if (1+i)x-2i/3+i + (2-3i)y+i/3-i =i

If z = x+iy and w = 1 - i^{2} / z-i

Show that mod w = 1 implies z is purely real.

if z is a complex number and |z|=1 then prove that z-1/z+1 is a purely imaginary number

what is (a+b+c)whole square

sir how to solve quadratic inequalities by wavy curve method

Q. ${z}_{1}$and ${z}_{2}$ are two complex numbers such that $\frac{{z}_{1}-2{z}_{2}}{2-{z}_{1}\overline{{z}_{2}}}$ is unimodular whereas ${z}_{2}$ is not a â€‹unimodular.

Then |${z}_{1}$| is

Q Find the square root of the complex number 5 -12i.if (1-i/1+i)

^{500}=a+ib, find the values of a and bprove that

cosA +cosB +cosC +cos(A+B+C) = 4cos((A+B) / 2)cos((B+C) / 2)cos((C+A) / 2)

^{2}+ y^{2}= (a^{2}+ b^{2}/ c^{2}+ d^{2})a+ibc+id

Find the modulus and argument of 1 + 2 i / 1 - 3 i ???

if the ratio of the roots of the equation x

^{2}+px+q=0 is equal to the ratio of the roots of the equation x^{2}+lx+m=0, prove that mp^{2}=ql^{2}Express in polar form 1 + 2i/1-3i

If (x+iy)^1/3 =(a+ib),prove that (x/a+y/b)=4(a^2-b^2)?

(A) | z1 z2 | = | z1 | | z2 |

(B) | z1 + z2 | = | z1 | + | z2 |

(C) | z1 – z2 | = | z1 | – | z2 |

(D) 2 1 2 1 z z z z

find sqrt(1-i)

If (x + iy) = sqrt [(1+i)/(1-i)],

prove that : x

^{2}+ y^{2}= 1if alpha and beta are 2 different complex numbers with |beta| = 1, then find |beta-alpha/1-bar alpha*beta|

(a+bw+cw

^{2})/(b+cw+aw^{2}) +(a+bw+cw^{2})/(c+aw+w^{2}) is,1). 1

2). -1

3). 2

4). -2

where, w represents omega.

If z =(x+iy) and w =( 1 - iz) / (z - 1) such that | w | = 1 then show that z is purely real .

pls solve this question.... if (1+2i)(2+3i)(3+4i)= x+iy.Show that x^2 +y^2 =1625.

if (x+iy)

^{3}= u+iv, then show that u/x +v/y = 4(x^{2}- y^{2})find the value of x and y if (1+i)x-2i/3+i + (2-3i)y+i/3-i =i

If z = x+iy and w = 1 - i

^{2}/ z-iShow that mod w = 1 implies z is purely real.

if z is a complex number and |z|=1 then prove that z-1/z+1 is a purely imaginary number1/i^(4m+k), m belongs to N

(1+x+xshow that^{2})^{n}= a_{0 +}a_{1}x +a_{2}x^{2}+ a_{3}x^{3}+ .......+ a_{2n}x^{2n},a_{0}+a_{3}+a_{6}+ .......... = 3^{n-1}(2+i root of 3)

^{2}