The generator matrix
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X X X 1 1 X X 1 1 X X X X X
0 2X 0 0 0 0 0 0 0 0 2X 2X 0 0 0 2X 0 0 0 0 2X 2X 2X 2X 2X 2X 2X 0 2X 0
0 0 2X 0 0 0 0 0 0 2X 2X 2X 0 2X 2X 0 0 2X 2X 0 2X 2X 2X 2X 0 2X 0 2X 0 0
0 0 0 2X 0 0 0 0 0 2X 0 2X 2X 2X 0 2X 2X 2X 0 0 0 0 0 2X 2X 2X 0 0 2X 0
0 0 0 0 2X 0 0 0 2X 0 0 2X 2X 0 2X 2X 0 2X 2X 0 0 2X 2X 2X 2X 0 2X 2X 2X 2X
0 0 0 0 0 2X 0 0 2X 0 2X 0 0 2X 2X 2X 2X 2X 0 0 0 2X 0 2X 0 2X 2X 0 2X 2X
0 0 0 0 0 0 2X 0 2X 2X 2X 0 0 0 2X 2X 2X 2X 0 2X 0 0 2X 0 2X 0 0 0 2X 0
0 0 0 0 0 0 0 2X 2X 2X 0 0 2X 2X 2X 0 2X 0 2X 2X 2X 0 0 2X 0 0 0 0 2X 0
generates a code of length 30 over Z4[X]/(X^2+2) who´s minimum homogenous weight is 24.
Homogenous weight enumerator: w(x)=1x^0+80x^24+32x^26+129x^28+1600x^30+95x^32+32x^34+54x^36+24x^40+1x^44
The gray image is a code over GF(2) with n=240, k=11 and d=96.
This code was found by Heurico 1.16 in 0.062 seconds.