#
2.

A simple pendulum with bob of mass m and conducting wire of length L swings under gravity through an angle $2\theta $. The earth's magnetic field component in the direction perpendicular to swing is B. The maximum potential difference induced across the pendulum is

$\left(1\right)2BL\mathrm{sin}\left(\frac{\theta}{2}\right).\sqrt{gL}\left(2\right)BL\mathrm{sin}\left(\frac{\theta}{2}\right)\sqrt{gL}\phantom{\rule{0ex}{0ex}}\left(3\right)BL\mathrm{sin}\left(\frac{\theta}{2}\right).(gL{)}^{3/2}(4)BL\mathrm{sin}\left(\frac{\theta}{2}\right).(gL{)}^{2}\phantom{\rule{0ex}{0ex}}$

$\left(1\right)2BL\mathrm{sin}\left(\frac{\theta}{2}\right).\sqrt{gL}\left(2\right)BL\mathrm{sin}\left(\frac{\theta}{2}\right)\sqrt{gL}\phantom{\rule{0ex}{0ex}}\left(3\right)BL\mathrm{sin}\left(\frac{\theta}{2}\right).(gL{)}^{3/2}(4)BL\mathrm{sin}\left(\frac{\theta}{2}\right).(gL{)}^{2}\phantom{\rule{0ex}{0ex}}$

This question has not been answered yet!

#### Don't worry! You can check out similar questions with solutions below

- A
**simple****pendulum**with**bob**of**mass**m and**conducting****wire**of ... - ... charged infinite
**wire**along a**direction****perpendicular**to it ... - ... . A
**magnet**falling vertically**under****gravity**, passes**through**... - ...
**simple****pendulum**, ...**wire**in a uniform**magnetic****field**.**Magnetic**... - ... and
**conducting****wire**of**length**L**swings****under****gravity****through**...