42) A mapping is selected at random from the set of all mappings of the set A = (1, 2,...., n) into itself. The probability that the mapping selected is bijective,  is
( a )   1 n   !   ( b )   1 n n ( c )   n   ! 2 n ( d )   n   ! n n

Dear Student,
Please find below the solution to the asked query:

Mapping is defined from A to A.A=1,2,3,...,nEach element of Ahas options in codoain to be mapped, henceTotal mappings=n×n×n×.. ntimes=nnFor one-one each element must have uinque image in codomainFirst element of A has n options, second has n-1 options, third hasn-2 options,...., last has 1 option.Hence Number of one-one functions=n×n-1×n-2×......×1=n!Now as number of elements in domain= number of elements in codomain,hence total one-one functions=Total onto functions.Hence yotal bijectiveone-one and onto functions=n!Required Probability=n!nn Answer 

Hope this information will clear your doubts about this topic.

If you have any doubts just ask here on the ask and answer forum and our experts will try to help you out as soon as possible.
Regards

  • 2
What are you looking for?