Evolution of number system - Journey from counting to real numbers.
Please give me information about this topic !

Thanks. :)

evolution to number system - journey from counting to real number

  • -2

 information on evolution of number  system journey from counting numbers to real numbers

  • 0

Natural number

Natural numbers can be used for counting (one apple, two apples, three apples, ...) from top to bottom.

In mathematics, the natural numbers are the ordinary whole numbers used for counting ("there are 6 coins on the table") and ordering ("this is the 3rd largest city in the country"). These purposes are related to the linguistic notions of cardinal and ordinal numbers, respectively (see English numerals). A later notion is that of a nominal number, which is used only for naming.

Properties of the natural numbers related to divisibility, such as the distribution of prime numbers, are studied in number theory. Problems concerning counting and ordering, such as partition enumeration, are studied in combinatorics.

There is no universal agreement about whether to include zero in the set of natural numbers: some define the natural numbers to be the positive integers {1, 2, 3, ...}, while for others the term designates the non-negative integers {0, 1, 2, 3, ...}. The former definition is the traditional one, with the latter definition first appearing in the 19th century. Some authors use the term "natural number" to exclude zero and "whole number" to include it; others use "whole number" in a way that excludes zero, or in a way that includes both zero and the negative integers.

History of natural numbers and the status of zero

The natural numbers had their origins in the words used to count things, beginning with the number 1.

The first major advance in abstraction was the use of numerals to represent numbers. This allowed systems to be developed for recording large numbers. The ancient Egyptians developed a powerful system of numerals with distinct hieroglyphs for 1, 10, and all the powers of 10 up to over one million. A stone carving from Karnak, dating from around 1500 BC and now at the Louvre in Paris, depicts 276 as 2 hundreds, 7 tens, and 6 ones; and similarly for the number 4,622. The Babylonians had a place-value system based essentially on the numerals for 1 and 10.

A much later advance was the development of the idea that zero can be considered as a number, with its own numeral. The use of a zero digit in place-value notation (within other numbers) dates back as early as 700 BC by the Babylonians, but they omitted such a digit when it would have been the last symbol in the number.[1] The Olmec and Maya civilizations used zero as a separate number as early as the 1st century BC, but this usage did not spread beyond Mesoamerica. The use of a numeral zero in modern times originated with the Indian mathematician Brahmagupta in 628. However, zero had been used as a number in the medieval computus (the calculation of the date of Easter), beginning with Dionysius Exiguus in 525, without being denoted by a numeral (standard Roman numerals do not have a symbol for zero); instead nulla or nullae, genitive of nullus, the Latin word for "none", was employed to denote a zero value.[2]

The first systematic study of numbers as abstractions (that is, as abstract entities) is usually credited to the Greek philosophers Pythagoras and Archimedes. Note that many Greek mathematicians did not consider 1 to be "a number", so to them 2 was the smallest number.[3]

Independent studies also occurred at around the same time in India, China, and Mesoamerica.[citation needed]

Several set-theoretical definitions of natural numbers were developed in the 19th century. With these definitions it was convenient to include 0 (corresponding to the empty set) as a natural number. Including 0 is now the common convention among set theorists, logicians, and computer scientists. Many other mathematicians also include 0, although some have kept the older tradition and take 1 to be the first natural number.[4] Sometimes the set of natural numbers with 0 included is called the set of whole numbers or counting numbers. On the other hand, integer being Latin for whole, the integers usually stand for the negative and positive whole numbers (and zero) altogether.

Notation

Mathematicians use N or mathbb{N}(an N in blackboard bold, displayed as β„• in Unicode) to refer to the set of all natural numbers. This set is countably infinite: it is infinite but countable by definition. This is also expressed by saying that the cardinal number of the set is aleph-null (aleph_0).

Typically, if a mathematician uses mathbb{N}for the set { 1, 2, 3, ldots }and he needs in the same scientific context this set including 0, then he mostly writes mathbb{N}_0for the latter.

On the other hand, if he uses mathbb{N}for the set { 0, 1, 2, ldots }and he needs in the same scientific context this set excluding 0, then he mostly writes mathbb{N}^+or mathbb{N}^*for the latter.

To be unambiguous about whether zero is included or not, sometimes an index (or superscript) "0" is added in the former case, and a superscript "*" or subscript "1" is added in the latter case:

mathbb{N}^0 = mathbb{N}_0 = { 0, 1, 2, ldots }

mathbb{N}^* = mathbb{N}^+ = mathbb{N}_1 = mathbb{N}_{>0}= { 1, 2, ldots }.

Some authors who exclude zero from the naturals use the terms natural numbers with zero, whole numbers, or counting numbers, denoted W, for the set of nonnegative integers. Others use the notation P for the positive integers if there is no danger of confusing this with the prime numbers. In that case, a popular notation is to use a script P for positive integers (which extends to using script N for negative integers, and script Z for zero).

Set theorists often denote the set of all natural numbers including zero by a lower-case Greek letter omega: ω. This stems from the identification of an ordinal number with the set of ordinals that are smaller. One may observe that adopting the von Neumann definition of ordinals and defining cardinal numbers as minimal ordinals among those with same cardinality, one gets ,mathbb N_0=aleph_0=omega. Lowercase omega ω is also similar to W.

Algebraic properties

The addition (+) and multiplication (×) operations on natural numbers have several algebraic properties:

  • Closure under addition and multiplication: for all natural numbers a and b, both a + b and a × b are natural numbers.
  • Associativity: for all natural numbers a, b, and c, a + (b + c) = (a + b) + c and a × (b × c) = (a × b) × c.
  • Commutativity: for all natural numbers a and b, a + b = b + a and a × b = b × a.
  • Existence of identity elements: for every natural number a, a + 0 = a and a × 1 = a.
  • Distributivity of multiplication over addition for all natural numbers a, b, and c, a × (b + c) = (a × b) + (a × c)
  • No zero divisors: if a and b are natural numbers such that a × b = 0   then a = 0 or b = 0

Properties

One can recursively define an addition on the natural numbers by setting a + 0 = a and a + S(b) = S(a + b) for all a, b. Here S should be read as "successor". This turns the natural numbers (N, +) into a commutative monoid with identity element 0, the so-called free monoid with one generator. This monoid satisfies the cancellation property and can be embedded in a group. The smallest group containing the natural numbers is the integers.

If we define 1 := S(0), then b + 1 = b + S(0) = S(b + 0) = S(b). That is, b + 1 is simply the successor of b.

Analogously, given that addition has been defined, a multiplication × can be defined via a × 0 = 0 and a × S(b) = (a × b) + a. This turns (N*, ×) into a free commutative monoid with identity element 1; a generator set for this monoid is the set of prime numbers. Addition and multiplication are compatible, which is expressed in the distribution law: a × (b + c) = (a × b) + (a × c). These properties of addition and multiplication make the natural numbers an instance of a commutative semiring. Semirings are an algebraic generalization of the natural numbers where multiplication is not necessarily commutative. The lack of additive inverses, which is equivalent to the fact that N is not closed under subtraction, means that N is not a ring; instead it is a semiring (also known as a rig).

If we interpret the natural numbers as "excluding 0", and "starting at 1", the definitions of + and × are as above, except that we start with a + 1 = S(a) and a × 1 = a.

For the remainder of the article, we write ab to indicate the product a × b, and we also assume the standard order of operations.

Furthermore, one defines a total order on the natural numbers by writing a ≤ b if and only if there exists another natural number c with a + c = b. This order is compatible with the arithmetical operations in the following sense: if a, b and c are natural numbers and a ≤ b, then a + c ≤ b + c and acbc. An important property of the natural numbers is that they are well-ordered: every non-empty set of natural numbers has a least element. The rank among well-ordered sets is expressed by an ordinal number; for the natural numbers this is expressed as "ω".

While it is in general not possible to divide one natural number by another and get a natural number as result, the procedure of division with remainder is available as a substitute: for any two natural numbers a and b with b ≠ 0 we can find natural numbers q and r such that

a = bq + r and r < b.

The number q is called the quotient and r is called the remainder of division of a by b. The numbers q and r are uniquely determined by a and b. This, the Division algorithm, is key to several other properties (divisibility), algorithms (such as the Euclidean algorithm), and ideas in number theory.

Generalizations

Two generalizations of natural numbers arise from the two uses:

  • A natural number can be used to express the size of a finite set; more generally a cardinal number is a measure for the size of a set also suitable for infinite sets; this refers to a concept of "size" such that if there is a bijection between two sets they have the same size. The set of natural numbers itself and any other countably infinite set has cardinality aleph-null (aleph_0).
  • Linguistic ordinal numbers "first", "second", "third" can be assigned to the elements of a totally ordered finite set, and also to the elements of well-ordered countably infinite sets like the set of natural numbers itself. This can be generalized to ordinal numbers which describe the position of an element in a well-ordered set in general. An ordinal number is also used to describe the "size" of a well-ordered set, in a sense different from cardinality: if there is an order isomorphism between two well-ordered sets they have the same ordinal number. The first ordinal number that is not a natural number is expressed as omega; this is also the ordinal number of the set of natural numbers itself.

Many well-ordered sets with cardinal number aleph_0have an ordinal number greater than ω (the latter is the lowest possible). The least ordinal of cardinality aleph_0(i.e., the initial ordinal) is omega.

For finite well-ordered sets, there is one-to-one correspondence between ordinal and cardinal numbers; therefore they can both be expressed by the same natural number, the number of elements of the set. This number can also be used to describe the position of an element in a larger finite, or an infinite, sequence.

Hypernatural numbers are part of a non-standard model of arithmetic due to Skolem.

Other generalizations are discussed in the article on numbers.

Formal definitions

Main article: Set-theoretic definition of natural numbers

Historically, the precise mathematical definition of the natural numbers developed with some difficulty. The Peano axioms state conditions that any successful definition must satisfy. Certain constructions show that, given set theory, models of the Peano postulates must exist.

Peano axioms

Main article: Peano axioms

The Peano axioms give a formal theory of the natural numbers. The axioms are:

  • There is a natural number 0.
  • Every natural number a has a natural number successor, denoted by S(a). Intuitively, S(a) is a+1.
  • There is no natural number whose successor is 0.
  • S is injective, i.e. distinct natural numbers have distinct successors: if ab, then S(a) ≠ S(b).
  • If a property is possessed by 0 and also by the successor of every natural number which possesses it, then it is possessed by all natural numbers. (This postulate ensures that the proof technique of mathematical induction is valid.)

It should be noted that the "0" in the above definition need not correspond to what we normally consider to be the number zero. "0" simply means some object that when combined with an appropriate successor function, satisfies the Peano axioms. All systems that satisfy these axioms are isomorphic, the name "0" is used here for the first element (the term "zeroth element" has been suggested to leave "first element" to "1", "second element" to "2", etc.), which is the only element that is not a successor. For example, the natural numbers starting with one also satisfy the axioms, if the symbol 0 is interpreted as the natural number 1, the symbol S(0) as the number 2, etc. In fact, in Peano's original formulation, the first natural number was 1.

Constructions based on set theory

A standard construction

A standard construction in set theory, a special case of the von Neumann ordinal construction, is to define the natural numbers as follows:

We set 0 := { }, the empty set,

and define S(a) = a ∪ {a} for every set a. S(a) is the successor of a, and S is called the successor function.

By the axiom of infinity, the set of all natural numbers exists and is the intersection of all sets containing 0 which are closed under this successor function. This then satisfies the Peano axioms.

Each natural number is then equal to the set of all natural numbers less than it, so that

·  0 = { }

·  1 = {0} = {{ }}

·  2 = {0, 1} = {0, {0}} = { { }, {{ }} }

·  3 = {0, 1, 2} = {0, {0}, {0, {0}}} = { { }, {{ }}, {{ }, {{ }}} }

·  n = {0, 1, 2, ..., n-2, n-1} = {0, 1, 2, ..., n-2,} ∪ {n-1} = {n-1} ∪ (n-1) = S(n-1)

and so on. When a natural number is used as a set, this is typically what is meant. Under this definition, there are exactly n elements (in the naïve sense) in the set n and nm (in the naïve sense) if and only if n is a subset of m.

Also, with this definition, different possible interpretations of notations like Rn (n-tuples versus mappings of n into R) coincide.

Even if the axiom of infinity fails and the set of all natural numbers does not exist, it is possible to define what it means to be one of these sets. A set n is a natural number means that it is either 0 (empty) or a successor, and each of its elements is either 0 or the successor of another of its elements.

Other constructions

Although the standard construction is useful, it is not the only possible construction. For example:

one could define 0 = { }

and S(a) = {a},

producing

·  0 = { }

·  1 = {0} = {{ }}

·  2 = {1} ={{{ }}}, etc.

Each natural number is then equal to the set of the natural number preceding it.

Or we could even define 0 = {{ }}

and S(a) = a ∪ {a}

producing

·  0 = {{ }}

·  1 = {{ }, 0} = {{ }, {{ }}}

·  2 = {{ }, 0, 1}, etc.

The oldest and most "classical" set-theoretic definition of the natural numbers is the definition commonly ascribed to Frege and Russell under which each concrete natural number n is defined as the set of all sets with n elements.[5][6] This may appear circular, but can be made rigorous with care. Define 0 as {{ }} (clearly the set of all sets with 0 elements) and define S(A) (for any set A) as {x ∪ {y} | x Ay x } (see set-builder notation). Then 0 will be the set of all sets with 0 elements, 1 = S(0) will be the set of all sets with 1 element, 2 = S(1) will be the set of all sets with 2 elements, and so forth. The set of all natural numbers can be defined as the intersection of all sets containing 0 as an element and closed under S (that is, if the set contains an element n, it also contains S(n)). One could also define "finite" independently of the notion of "natural number", and then define natural numbers as equivalence classes of finite sets under the equivalence relation of equipollence. This definition does not work in the usual systems of axiomatic set theory because the collections involved are too large (it will not work in any set theory with the axiom of separation); but it does work in New Foundations (and in related systems known to be relatively consistent) and in some systems of type theory.

 

  • -4

 fg

  • -3

 holiday homework :P

  • -8

 sure this is it?

  • -5

this is all about history and defination of counting numbers what about real numbers huh?

  • -2
M - Miracle of nature A - Art of arithmetic T - Tool of knowledge H - Habit of problem solving E - Evaluation of civilization M - Magic of numbers A - Application of rules T - Tool of knowledge I - Ideas of intellect C - Creativity of algebra S - Science of learning
  • 12
Absolutely right u just keep will power and solve it and u will lead by practise ALL THE BEAT FR UR ALL EXAMS
  • 0
Represent 9.4 , 3.5 on number line
  • -3
Represent root 2 to root 7 with step of construction and justification by spiral method.....plzz answer this questions plzzz
  • -4
Mathematics itself
  • -9
U should make a time table Have limited time for surfing on the net And dont watch TV too much. Meditation is the best way to concentrate.
  • -2
See 20=5 X 2 X 2 so the denominator is in the form of 5^1 X 2^2 which is in the form of 2^n X 5^m so it is a terminating decimal. Thank You.
  • -2
M - Miracle of nature A - Art of arithmetic T - Tool of knowledge H - Habit of problem solving E - Evaluation of civilization M - Magic of numbers A - Application of rules T - Tool of knowledge I - Ideas of intellect C - Creativity of algebra S - Science of learning.

Hope this will help you!
  • -1
M - Miracle of Nature
A - Art of Arithmetic
T - Tool of Knowledge
H - Habit of Problem Solving
E - Evaluation of Civilization
M - Magic of Numbers
A - Application of Rules
T - Tool of Knowledge
I - Ideas of Intellect
C - Creativity of Algebra
S - Science of Learning
  • 2
Tanu tq vry nice explanation
  • -1
892 in expanded form
  • 0
Please find this answer

  • 2
77 / 496
  • 0
Hi journey
  • 0
Please find this answer

  • 0
To verify the properties of a parallelogram

  • 0
Please find this answer

  • 0
insert two ratonal number between-1/3and-1/2and arrange in ascending order
  • 0
Number system refer textbook
  • 0
So sorrrrrrrrrrrrrrrrry
  • 0
Counting number - All natural number are called counting numbers.
Ex. - 1,2,3,4,5,............

Natural numbers - 1,2,3,.......or counting numbers are called natural numbers.
Ex- 1,2,3,4.............

Whole numbers - Natural numbers along with 0 is called whole number.
Ex - 0,1,2,3,4,...........

Integers - The collection of natural numbers, whole numbers and also negative numbers is called integer.
Ex- ......-4, -3, -2, -1, 0,1,2,3,4,.......

Rational numbers - The number which can be written in the form of p/q, where p and q are integers and q does not equal to 0, are called rational number.
Ex- 1/2, -1/3, 4/5......

Irrational numbers- The number which can't be written in the form of p/q, where p and q are integers and q does not equal to 0, are called irrational number.
Ex- ?2, ?3, 0.10100100010000......

Real number- The collection of all rational numbers and irrational numbers are called real numbers.
Ex- 1/2 , ?2, 3/6, ?5.........
  • 0
Evaluate {root 5+2root 6} +{root8-2root15}
  • 0
hey how are you please send me your friend request please be my friend
  • 0
Given
  • 0
Natural numbers can be used for counting (one apple, two apples, three apples, ...) from top to bottom.
In mathematics, the natural numbers are the ordinary whole numbers used for counting("there are 6 coins onthe table") and ordering ("this is the 3rd largest city in the country"). These purposes are related to the linguistic notions of cardinal and ordinal numbers, respectively (see English numerals). A later notion is that of a nominal number, which is used only for naming.
Properties of the natural numbers related to divisibility, such as the distribution of prime numbers, are studied in number theory. Problems concerning counting and ordering, such as partition enumeration, are studied in combinatorics.
There is no universal agreement about whether to include zero in the set of natural numbers: some define the natural numbers to be the positive integers {1, 2, 3, ...}, while for others the term designates the non-negative integers {0, 1, 2, 3, ...}. The former definition is the traditional one, with the latter definition first appearing in the 19th century. Some authors use the term "natural number" to exclude zero and "whole number" to include it; others use "whole number" in a way that excludes zero, or in a way that includes both zero and the negative integers.
  • 0
I don't know dum
  • -1
I don't know dude
  • 0
Haha
  • 0
What dude

  • -1
.














































































































































































































































































































































































































































































































































Ha ha ha
  • 0
? ?
? ?
? ?
? ?
? ?
? ?
? ?
? ?
? ?
? ?
  • -1
????????????
  • 0
Mathematics itself
  • 0
M - Miracle of nature A - Art of arithmetic T - Tool of knowledge H - Habit of problem solving E - Evaluation of civilization M - Magic of numbers A - Application of rules T - Tool of knowledge I - Ideas of intellect C - Creativity of algebra S - Science of learning
  • 0
M - miracle of nature
A - art of arithmetic
T - tool of knowledge
H - habit of problem solving
E - evaluation of civilization
M - magic of numbers
A - application of rules
T - tool of knowledge
I - ideas of intellect
C- creativity of algebra
S - solving the beautiful puzzle sums
  • 0
In 256.093 the digits 9 is at
  • 0
You have to find it by yourself.,,,??
  • 0
History and Evolution of Irrational Numbers

The existence of irrationality in numbers was accepted by Indian mathematicians as far back as?7th?century BC when Manava, an author of the Indian geometric text?Sulbasutras, discovered (while finding the hypotenuse of a right-angled triangle) that it is not possible to accurately calculate the square roots of numbers like 2 and 8. It is, however, the Pythagorean school of Greek mathematicians, or the Pythagoreans, who are credited with discovering irrational numbers sometime in 400 BC. In 5th?century AD, the great Indian mathematician Aryabhata suggested that the value of ? is incommensurable. Later, in the 1700s, a Swiss mathematician named Lambert and a French mathematician named Legendre proved ? to be irrational.?
In this way, a long line of mathematicians helped shed light on the concept of irrational numbers. These mathematicians questioned the rationality of those numbers that cannot be written in the form of a ratio of integers.The Pythagoreans were the first to actually prove a number to be irrational and this number was. The set of all irrational numbers is denoted by.
Go through this lesson to get a basic idea about the irrationality of numbers.
Golden ratio
Two quantities are said to be in the golden ratio if the ratio of the sum of those quantities to the larger quantity is the same as the ratio of the larger quantity to the smaller one. Let us understand this concept.
Say?a?and?b?are two line segments that are in the golden ratio.?
Therefore,
The golden ratio is represented by the Greek letter (phi), where, an irrational number.
The golden ratio is also known as ?the golden mean? and ?the golden section?. This ratio is used not only in mathematics but also in biology, art, music, architecture and in various other branches of science.
Pi?is a constant value that is equal to the ratio of the circumference of a circle to its diameter. It is an irrational number represented by the Greek letter ???. This symbol was proposed by a Welsh mathematician named William Jones in 1706. The value of pi is approximately equal to.
The Great Pyramid of Giza was constructed with a perimeter of about 1760 cubits and a height of about 280 cubits. The ratio of the perimeter to the height, i.e.,??is approximately equal to 6.285, which is almost equal to 2?. This is cited by some as the proof that the people who built the pyramid knew about the special ratio represented by ?.
Since ? is closely related to the circle, it is found in many geometric and trigonometric formulae. It is also used in many other scientific formulae such as in thermodynamics, the number theory, mechanics and electromagnetism.
A?ryabhata (476 AD?550 AD) was the first Indian mathematician and astronomer.
  • 0
History and Evolution of Irrational Numbers

The existence of irrationality in numbers was accepted by Indian mathematicians as far back as?7th?century BC when Manava, an author of the Indian geometric text?Sulbasutras, discovered (while finding the hypotenuse of a right-angled triangle) that it is not possible to accurately calculate the square roots of numbers like 2 and 8. It is, however, the Pythagorean school of Greek mathematicians, or the Pythagoreans, who are credited with discovering irrational numbers sometime in 400 BC. In 5th?century AD, the great Indian mathematician Aryabhata suggested that the value of ? is incommensurable. Later, in the 1700s, a Swiss mathematician named Lambert and a French mathematician named Legendre proved ? to be irrational.?

In this way, a long line of mathematicians helped shed light on the concept of irrational numbers. These mathematicians questioned the rationality of those numbers that cannot be written in the form of a ratio of integers.The Pythagoreans were the first to actually prove a number to be irrational and this number was?. The set of all irrational numbers is denoted by??.

Go through this lesson to get a basic idea about the irrationality of numbers.

Golden ratio

Two quantities are said to be in the golden ratio if the ratio of the sum of those quantities to the larger quantity is the same as the ratio of the larger quantity to the smaller one. Let us understand this concept.

Say?a?and?b?are two line segments that are in the golden ratio.?

?

Therefore,?

The golden ratio is represented by the Greek letter ??? (phi), where??, an irrational number.

The golden ratio is also known as ?the golden mean? and ?the golden section?. This ratio is used not only in mathematics but also in biology, art, music, architecture and in various other branches of science.

Pi?is a constant value that is equal to the ratio of the circumference of a circle to its diameter. It is an irrational number represented by the Greek letter ???. This symbol was proposed by a Welsh mathematician named William Jones in 1706. The value of pi is approximately equal to?.

The Great Pyramid of Giza was constructed with a perimeter of about 1760 cubits and a height of about 280 cubits. The ratio of the perimeter to the height, i.e.,???is approximately equal to 6.285, which is almost equal to 2?. This is cited by some as the proof that the people who built the pyramid knew about the special ratio represented by ?.?

Since ? is closely related to the circle, it is found in many geometric and trigonometric formulae. It is also used in many other scientific formulae such as in thermodynamics, the number theory, mechanics and electromagnetism.

A?ryabhata (476 AD?550 AD) was the first Indian mathematician and astronomer.
  • 0
Please find this answer

  • 0
Ekaterina
  • 0
I did not solve question no 1exersice no 1.3
  • 0
Infinity rational numbers????
  • 0
solve this question

  • 0
the complementary angle of 65 degrees
  • 0
exercise 1.3 chapter 1st
  • 0
Please find this answer

  • 0
Please find this answer

  • 0
Live class which time
  • 0
527ffd
C
  • 0
Cdggfd
  • 0
Please find this answer

  • 0
Answer

  • 0
Jkfn
  • 0
t square minus 3 t power 4 + 3t

  • 0
mam please tell me??????
  • 0
2+2=4
  • 0
ninth class ke pahla chapter ke solution
  • 0
ok my friend
  • 0
Class
  • 0
Please find this answer

  • 0
Very easy
  • -1
Chaudhari tomax
  • 0
Goda to
  • 0
Std 6 maths
  • 0
Please find this answer

  • 0
which of the following number playing
  • 0
? ??????????
  • 0
M - Miracle of Nature
A - Art of Arithmetic
T - Tool of Knowledge
H - Habit of Problem Solving
E - Evaluation of Civilization
M - Magic of Numbers
A - Application of Rules
T - Tool of Knowledge
I - Ideas of Intellect
C - Creativity of Algebra
S - Science of Learning

 
  • 5
Please find this answer

  • 0
maths subject table batao sikhao
  • 0
mutant of numbers
  • 0
3x+4=5x_10
3x+5x=_10_4
2x=_15
X=14/2
X=7
  • 0
Please find this answer

  • 0
Land,water and soil are ______ resources
  • 0
Telgu
  • 0
67374
  • 0
Maths ex 2.3 class 9
  • 0
Yes true??
  • 0
Please find this answer

  • 0
write the following in decimal form and say what kind of decimal expansion each has question 136 100
  • 0
2 -3 =1
  • 0
hiiiiiiiiiiiii
  • 0
math divide
  • 0
9th Kannada medium lessons
  • 0
Tssd
  • 0
Bugvgg
  • 0
Deepak Kumar
  • 0
Mm hg I'm unable trim that
  • 0
What is the light of the case
  • 0
What is the positive love Apple iPhone 5c vs 5s Raw drop the
  • 0
Hi not because the lady in charge will have the light in weight is not available because you an update from you have received your system without making copies for you have received the lady in her own a good time with the lady in red on a good time with the lady that is not available because you an update to my life has not because you have received your mail id of this transparent with a great time to pass the time with the case for you have received your mail will render a great time to get the lady in red the light of the case of any action based the lady who is no shadow of the case with the light of the lady in charge at app Anthea the lady that is not
  • 0
What is the number system
  • 0
Fgjfxbhby disorganization
  • 0
I don't no
  • 0
Job ki maje bahut jarurat hai
  • 0
Please find this answer

  • 0
write the next three natural number after 10999
  • 0
subject in Telugu
  • 0
Main tera ha deewana baliye
  • 0
Please find this answer

  • 0
pratyek prakrutik Ek Pune sankhya hoti hai
  • 0
He Hie
  • 0
Ugg6 hi usd
  • 0
9th ka math 9th ka
  • 0
kya hal
  • 0
science topic
  • 0
Answer
  • 0
There are not responding to our answers
Then why this app is need for us so
I will delete the app
  • 0
Gopal kamit
  • 0
I don't know
  • 0
Hi kaise ho
  • 0
English medium
  • 0
Please find this answer

  • 0
120 metre Lambe Ek belan ka vyast 84 semi yadi kisi Maidan ka Santhal karane Mein is balon ko pure Chakkar Lagane padte hain to 30 paise Prati varg metre ki Dar se use samtal karane ka Vigyan kijiye
  • 0
9+2=11
3-2=1
2+3=5
5+2=7
7+4=11
  • 0
science
  • 0
Please find this answer

  • 0
Maths
  • 0
9+2=11
3-2=1
2+3=51
5+2=7
7+4=11
  • 0
Please find this answer

  • 0
Please find this answer

  • 0
Saint Mary School
  • 0
Please find this answer

  • 0
I love you so much baby
  • 0
Please find this answer

  • 0
Please find this answer

  • 0
Please find this answer

  • 0
place value and face value
  • 0
Math chapter 1
  • 0
Please find this answer

  • 0
Please find this answer

  • 0
Math
  • 0
2244
  • 0
Mjptcbcwrs boys mothad
  • 0
Mjptcbcwrs boys morthad 8thclass
  • 0
Mjptcbcwrs boys morthad 8thclass
  • 0
MD Faizan Alam
  • 0
Mohammed Mirza Ghalib
  • 0
Please find this answer

  • 0
Please find this answer

  • 0
There are many theories about the evolution of number systems. But what I know is that al-khawarizmi was the one who invented the concept of algebra which is very famous in math. Brahmagupta was also a mathematician and astronomer. Because of him, math had a new meaning due to the number zero.
Hope this helps.
  • 0
Write the coefficient of X in each of the following
a.2+y+X b./2x-1
  • 0
Please find this answer

  • 0
It's ok yaar
  • 0
Just to be a great day and night and I have been on a new one of these days I don't think you are you are ready
  • 0
Telugu medium Telugu class
  • 0
Hinn
  • 0
Please find this answer

  • 0
Please find this answer

  • 0
Please find this answer

  • 0
tera ishq ha tu
  • 0
Please find this answer

  • 0
Please find this answer

  • 0
lesson number 1 maths exercise 1
  • 0
physical science test book photos
  • 0
Please find this answer

  • 0
how to connect
  • 0
Aman
  • 0
Please find this answer

  • 0
Oh Verma
  • 0
Please find this answer

  • 0
Aman kumar
  • 0
Yes,I play
  • 0
My ID H.R.don@DH
  • 0
Please find this answer

  • 0
34? 48532
  • 0
Please find this answer

  • 0
super hit Tik Tok
  • 0
Fgfg
  • 0
Visualise 4.26 on the number line up to 4 decimal Places 1.4 Neha
  • 0
Please find this answer

  • 0
Pranshu t
  • 0
Answer is-3
  • 0
Please find this answer

  • 0
Please find this answer

  • 0
a plus b ka whole square
  • 0
math class 8 ka question answer

  • 0
How to represent square root of 5 on number
  • 0
Root of 5 line
  • 0
namaskar 10 ka Sawal
  • 0
Namak 18 December 2 ke sawal
  • 0
Nepali bacche
  • 0
Find three consecutive odd number whose sum is 165
  • 0
Education
  • 0
Evolution of number system - Journey from counting to real numbers. Pleawe give information about this topic ! Thanks. :)
  • 0
Please find this answer

  • 0
Please find this answer

  • 0
Please find this answer

  • 0
Unchi Si Haveli se ghar
  • 0
This question is very easy to the mathematics.
  • 0
Please find this answer

  • 0
0.011
  • 0
M - Miracle of Nature

A - Art of Arithmetic

T - Tool of Knowledge

H - Habit of Problem Solving

E - Evaluation of Civilization

M - Magic of Numbers

A - Application of Rules

T - Tool of Knowledge

I - Ideas of Intellect

C - Creativity of Algebra

S - Science of Learning
  • 0
Please find this answer

  • 0
Irrirational numbers cant be written in p/q form
  • 0
Please find this answer

  • 0
Please find this answer

  • 0
Which r stopped on the quotient when we divide
  • 0
Thhtrggz
  • 0
Samriddhi yadav
  • 0
Sorry we don't now
  • 0
science

  • 0
Please find this answer

  • 0
Answer is 2
  • 0
Please find this answer

  • 0
Tushar participated in two quizzes. in the first quiz,points lost for each incorrect answer is (-3).In the second quiz,point lost for each incorrect answer is.(-6).he lost a total of 36 points in the first quiz and 60 points in the second quiz. how many incorrect answer did he give in eachquiz?
  • 0
9 7 mathematics question answers and practice set number 1.2
  • 0
Please find this answer

  • 0
This is not math
This is eco
  • 0
Please find this answer

  • 0
25.50
  • 0
What are you looking for?