Explain counter current mechanism in detail.

Concentration of urine is achieved by the presence of a concentration gradient in the medullary interstitium. Such concentration gradient is maintained by a specialized mechanism called the counter-current mechanism. For further information on the counter current mechanism, kindly refer to lesson 3; chapter 19 of our biology study material.

@Huuny:- Good answer, keep posting!!

  • 0

In the kidney, the loop of Henle is the portion of the nephron that leads from the proximal convoluted tubule to the distal convoluted tubule. The loop has a hairpin bend in the renal medulla. The main function of this structure is to reabsorb water and ions from the urine. To do this, it uses a countercurrent multiplier mechanism in the medulla. It is named after its discoverer, F. G. J. Henle.

COUNTERCURRENT SYSTEM and the LOOP OF HENLE

1. The Loop of Henle establishes medullary hyperosmolarity

The ascending limb of the loop of Henle transports solutes (NaCl) out of the tubule lumen with little or no water, generating an hyperosmotic medullary interstitium and delivering an hyposmotic tubule fluid to the distal tubule. This is called the "single effect".

The osmolarity of the interstitium rises progressively from cortex to medulla and papilla through multiplication of the "single effect" by countercurrent flow in the branches of the loop: The single effect in fluid processed by loop segments located near the tip of the papilla occurs in fluid already subject to the single effect when the fluid was in loop segments located closer to the cortex.

Countercurrent exchange of solutes between ascending and descending vasa recta (the renal medullary capillaries) minimizes solute washout from the medullary interstitium.


2. The countercurrent system permits forming a concentrated urine

In the presence of ADH, which increases water permeability, the hyposmotic fluid that enters the distal tubule (DT) from the thick ascending limb (TAL) looses most of its water by osmotic equilibration with the surrounding cortical interstitium along the CNT and cortical collecting duct (CCD). It also continues loosing NaCl through reabsorptive transport along DT, CNT and CCD, until the tubule fluid becomes isoosmotic with plasma, by the end of the CCD.

The relatively small amount of isoosmotic fluid that flows into the medullary collecting ducts losses progressively more and more water to the hyperosmotic medullary and papillary interstitia and is finally excreted as hyperosmotic, highly concentrated urine.


3. The countercurrent system permits forming a dilute urine

In the absence of ADH, the hyposmotic fluid that enters the DT from the loop of Henle, continues to be diluted by transport of NaCl via NaCl (thiazide sensitive) cotransporters into DT cells and via Na channels (amiloride sensitive) along the CD. Water reabsorption is limited so that the tubule fluid becomes more and more dilute along DT, CNT and collecting ducts (CCD, OMCD and IMCD), until it is excreted as a large volume of hyposmotic urine.

  • 2
What are you looking for?