Explain exponential functions

Explain exponential functions Exponential funcuon v B"'tive constant nutnber. called '101' 'ion. argument adopts anv values. the tunenon values are otherwise We will have a multi-valncel iunction. So. the tonction y • has at 1/4 tour dinerc•nt values y — .Ai. But we consider as the function value only y A. Graphs of an exm»ncnnal timetion tot 2 and a 112 are shown on Fig. l. 18. All they are going through the point (0. I At a = I we have as a graph a straight line, parallel to A-axis. i.e. the function becomes a constant value. equal to l. At a an exi»nential tuncuon increases. and at O < a I —decreases. x

Exponential function is defined asf:+fx=ax, where a>0 and a1. 'a' is a constant and aE.g y=2x, y=10x, etcThe text actually says thatConsider an example fx=81xf14=8114Now 8114 can take many values like 3, 3i, -3i, -3 But since co-domain of function is positive real numbers so, we will only consider positive real values i.e. 3 here  f14=8114=3If a=1, then no matter what is the value of x, fx=1However note in exponential function a>0 and a1

  • 0
What are you looking for?