Find the locus of the middle points of the chord of contact of tangents to the circle x2+y2=1 drawn from the points on the circle x2+y2+4x+6y+9=0 .

Dear Student,
Please find below the solution to the asked query:

x2+y2=1Equation of chord of contact from x1,y1 isT=0xx1+yy1-1=0....iwhere x1,y1 lies on x2+y2+4x+6y+9=0i.e. x12+y12+4x1+6y1+9=0....iiLet mid point of chord of contact be h,kEquation of chord having mid point h,k isT=S1xh+yk-1=h2+k2-1xh+yk-h2+k2=0....iiii and iii represent same line, hence compare coefficientsx1h+y1k=1h2+k2x1,y1=hh2+k2,kh2+k2Put in ii to get locus.hh2+k22+kh2+k22+4hh2+k2+6kh2+k2+9=0h2+k2+4hh2+k2+6kh2+k2+9h2+k22=0x2+y2+4xx2+y2+6yx2+y2+9x2+y22=0

Hope this information will clear your doubts about this topic.

If you have any doubts just ask here on the ask and answer forum and our experts will try to help you out as soon as possible.
Regards

  • 6
What are you looking for?