find the maximum and minimum value of f (x)=x^50-x^20 in tge interval (0, pi/2)

Dear Student,
Please find below the solution to the asked query:

We have,fx=x50-x20 , x0,π2f'x=50x49-20x19=10x195x30-2For maxima or minima f'x=010x195x30-2=0Either x19=0or  5x30-2=0when  x19=0x=0 but x0,π2, hence x=0 will not be considered.When 5x30-2=0x30=25=0.4x=0.4130As f'x=10x195x30-2 Now f'x>0 when x>0.4130 i.e. f'x increasesand f'x<0 when x<0.4130i.e. f'x decreases,hence f'x will have point of local minima at x=0.4130.fx=x50-x20=x20x30-1f0.4130=0.420300.43030-1=0.4230.4-1=0.423-0.6fxmin=-0.60.423 AnswerHere maximum value cannot be determined as we do not know number just before x=π2.But we can say that maximum value tends towards fπ2fx=x20x30-1fxmaxπ220π230-1 Answer

Hope this information will clear your doubts about this topic.

If you have any doubts just ask here on the ask and answer forum and our experts will try to help you out as soon as possible.
Regards

  • 7
What are you looking for?