Find the number of points where the given function f(x)=|x-1| |x-2| |x-3| sin πx is
1. Continous
2. Discontinuous
3. Derivable
4. Not Derivable

Dear student
{Using the result that f(x) g(x) is continuos if f(x) and g(x) are continuos.}

Since |x-1|, |x-2|, |x-3| and Sin πx are all continuos for all real x, therefore f(x) = |x-1||x-2||x-3| Sin πx  will be continuous
f(x) is not discontinuous for any value of x.

If f(x) and g(x) are derivable at x=a then f(x) g(x) are derivable at x=a
Sin πx is differentiable for all real x, however |x-1|, |x-2| and |x-3| are not differentiable at x=1, x=2 and x=3 respectively.

These are the points at which we need to check continuity.
At x=1
Right hand derivative-

limh0+ f(1+h)-f(1)h=limh0+h(1-h)(2-h)Sin (π+πh)h=limh0+-h(1-h)(2-h) ×limh0+ Sin πhπh ×π=limh0+-h(1-h)(2-h) ×π=0

Left hand derivative

limh0- f(1-h)-f(1)-h=limh0-h(1+h)(2+h)Sin (π-πh)-h=limh0--h(1+h)(2+h) ×limh0- Sin πhπh ×π=limh0--h(1+h)(2+h) ×π=0
Left hand derivative=right hand derivative

therefore f(x) is differentiable at x=1


At x=2
Right hand derivative-

limh0+ f(2+h)-f(2)h=limh0+(1+h)h(1-h)Sin (π+πh)h=limh0+-(1+h)h(1-h) ×limh0+ Sin πhπh ×π=limh0+-(1+h)h(1-h) ×π=0

Left hand derivative

limh0- f(2-h)-f(2)-h=limh0-(1-h)(h)(h+1)Sin (2π-πh)-h=limh0-h(1+h)(1-h) ×limh0- Sin πhπh ×π=limh0-h(1-h)(1+h) ×π=0
Left hand derivative=right hand derivative

therefore f(x) is differentiable at x=2


At x=3
Right hand derivative-

limh0+ f(3+h)-f(3)h=limh0+(2+h)(1+h)(h)Sin (3π+πh)h=limh0+-(2+h)(1+h)(h) ×limh0+ Sin πhπh ×π=limh0+-(2+h)(1+h)(h) ×π=0

Left hand derivative

limh0- f(3-h)-f(3)-h=limh0-(2-h)(1-h)(h)Sin (3π-πh)-h=limh0--(2-h)(1-h)(h) ×limh0- Sin πhπh ×π=limh0--(2-h)(1-h)(h) ×π=0
Left hand derivative=right hand derivative

therefore f(x) is differentiable at x=3


Hence f(x) is derivable at all x
 

  • -1
What are you looking for?