Give an example of a function which is continuos but not differentiable at at a point.

Consider a function, f(x) = x,        x>0-x,     x0
This mod function is continuous at x=0 but not differentiable at x=0.

Continuity at x=0, we have:

(LHL at x = 0)

 limx0- f(x) = limh0 f(0-h) = limh0 -(0-h) = 0

(RHL at x = 0)

 limx0+ f(x) = limh0 f(0+h) = limh0 (0+h) = 0

and  f(0) = 0

Thus, limx0- f(x) = limx0+ f(x) = f(0).

Hence, f(x) is continuous at x=0.

Now, we will check the differentiability at x=0, we have:

(LHD at x = 0)

limx0- f(x) - f(0)x-0 = limh0 f(0-h) - f(0)0-h-0 = limh0 -(0-h) - 0-h = -1

(RHD at x = 0)

limx0+ f(x) - f(0)x-0 = limh0 f(0+h) - f(0)0+h-0 = limh0 0+h - 0h = 1

Thus,  limx0- f(x)  ≠ limx0+ f(x) 

Hence f(x) is not differentiable at x=0.

  • 0
What are you looking for?