Given a2 + b2 = 1, c2 + d2 = 1, p2 + q2 = 1, where all numbers are real , then

  • ab + cd + pq > and equal to 1
  • ab + cd + pq < 3
  • ab + cd + pq> and equal to 3
  • ab + cd + pq<and equal to 3/2

We know that, square is always non-negative.

∴ (a-b)2 + (c-d)2 + (p-q)2 ≥ 0

⇒ a2 + b2 - 2ab + c2 + d2 - 2cd + p2 + q2 - pq ≥ 0

⇒ 1 + 1 + 1 -2(ab + cd + pq) ≥ 0  [Given, a2 + b2 = 1, c2+ d2 = 1 and p2 + q2 = 1]

⇒ 3 ≥ 2(ab + cd + pq)

⇒ ab + cd + pq ≤

Since, < 3, so we get

 ab + cd + pq ≤ < 3

⇒ ab + cd + pq < 3

  • 13
What are you looking for?