If  F(x)=[25-​x​2 ​]1/2     then  Lim(x-->1) F(x)-F(1)+x-1

Dear Student,
Please find below the solution to the asked query:

Fx=25-x2L=limx1 Fx-F1x-1At x=1, we get F1-F11-1=00 which is 00 form. Hence We can applyL-Hopital's ruleDifferentiating numerator and denominator separately with respect to x, we get:L=limx1 F'x-01-0=limx1 F'xAs Fx=25-x2F'x=1225-x2.ddx25-x2=-2x225-x2=-x25-x2L=limx1 F'x=limx1 -x25-x2Applying limit we get:L=-125-1=-124=-126limx1 Fx-F1x-1=-126

Hope this information will clear your doubts about this topic.

If you have any doubts just ask here on the ask and answer forum and our experts will try to help you out as soon as possible.

  • 0
Correction:- Lim(x-->1) F(x)-F(1)/ x-1
  • 0
What are you looking for?