If the sum of the lengths of the hypotenuse and a side of a right triangle is given, show that the area of the triangle is maximum when the angle b/w them is pie/3.

consider the following triangle ABC

Let AC= y and  BC= x and x + y = k  ( k is a constant)

Let A be the area of triangle then

...... (1)

After differentiating (1) w.r.t x we get

 ...... (2)

putting (2) equal to 0 we get x= k/3

again differentiating (2) we get

 ...... (3)

put dA/dx=0 and x=k/3 in (3)

Thus, A is maximum when x=k/3

Now,  x = k/3


therefore cosθ=x/y

⇒ cosθ=(k/3)/2k/3=1/2

⇒θ = π/3

  • 114
What are you looking for?