If you are a Brilliant  what is the formula for a4+b4

 there is no formula,we have to factorise it

  • -2

(a^2)^2 + (b^2)^2

let a^2 = m ; b^2 = n

m^2 + n^2 = (m+n)^2 - 2mn

[(a^2) + (b^2)]^2 - 2 a^2 b^2

[(a+b)^2 - 2ab]-2 a^2 b^2

therefore a^4 + b^4 = (a+b)^2 - 2 ab (1+ab)

  • 11

 (a2+b2)2-2a2b2

  • 8

 a4+b4 = (a2+b2)2 - 2a2b2

  • 92
  •  (a4+B4) = a4+4a4b+6a2b2+4ab3+b4
  • -6

GOOD

  • -6

a^4+b^4= (a^2+b^2)^2-2a^2b^2  (or)  (a+b)^2-2a(1+b)

  • -3
A4-b4
  • -6

(a4+b4) = a4+a3b+a2b2+ab3+b4

  • -2

a4+b4= (a+b)(a3+b3-a2b-ab2)

a5+b5= (a+b)(a4+b4-a3b-ab3+a2b2)

This one is the actual formula . enjoy

  • -8

a4+b4=(a2-under root2ab+b2) (a2+under root2ab+b2)

  • -4
kio tumhe nahi pta brilliant bache.
  • -7
what a hoe.
  • -3

 (a² + 2½ab + b²)(a² - 2½ab + b²)

  • -9
The formula is:-
a4+b4= (a2+b2)2-2a2b2
  • 24
(a2)2+(b2)2+2a​2b2-2a2b2                              (A+B)2  and 2a2b2-2a2b2=0
(a2+b2)2-(root2ab)2                                      a2-b2=(a+b)(a-b)
  (a2+b2-root2ab)  (a2+b2+root2ab)

 
  • -7

4a^2b^2=(a^2+b^2)^2 —(a^2-b^2);now 

a^4+b^4 = (a^2)^2+(b^2)^2;

=(a^2+b^2) ^2–2a^2b^2;

=(a^2+b^2)^2 — (1/2)[4a^2b^2];

 simplifiy

=(a^2+b^2)^2  —  (1/2)[(a^2+b^2)^2  —  (a^2-b^2)^2];

= (1/2){(a^2+b^2)^2 + (a^2-b^2 )^2};

 

  • -4
a4+b4 = (2a2b) + (2ab2)
OR
a4+b4 = (2ab)​3
  • -4
a4+b4=(a2+b2)2-2a2b2
  • -5
{a^2+b^2}^2 - 2a^2b^2
=a^4 + b^4 +2a^2b^2 - 2a^2b^2
=a^4 + b^4
  • -2
a4+b4 can be written in the following way:-
(a2+b2)2= a4+b4+2a2b2
a4+b4=  (a2+b2)2-2a2b2
​           = (a2+b2)2-(
2ab)2
             = (a2+b2-2ab)(a2+b2+√​2ab)
          
  

         
  • 0
a4+b4= (a2+b2)2-2a​2b2
  • -3
a4+b4= (a2+b2)2-2a2b2
  • -4
(a2+b2)2-2a2b2
  • -4

 (a2 + √2ab + b2)(a2 - √2ab + b2)

  • -3
(a2+b2)2-2a2b2
 
  • -3
??
  • -3
The answer to your query is as follows - 
a4+b4  = (a2+b2)2 - 2.a​2b2

Hope this Helps!A green smiley would do just great !
  • -3
b​4​-4ab​2​c/a​4
  • -7
a2+b2= (a2+b2)2- 2a2b2
  • 0
ant and cow is the answer
 
  • -3
as answered above 
lol i just wanted merit points
  • -4
a4+b4+2ab4+2a​4b

Hope this helps you a lot.
  • -3
=  (a²)² + (b²)²
=  (a² + b²) (a² - b²)
=  (a + b) (a - b) (a² + b²)
 
  • -5
MC BC land le lo
  • -7
a4*b4=(ab)4
  • -2
(ab)^4
  • 0
We know that (a+b)⁴=a⁴+4a³b+6a²b+4ab³+b⁴ so, a⁴+b⁴=(a+b)⁴ - 2ab(2a²+3a+2b²)
  • -2
a?+b?= (a?+b?)? - 2a?b?
  • -2
(A2+B2)2 - A2+B2
  • -4
prove that root 6 + root 7 whole square is an irrational number
  • -2
4(a+b)
  • 0
Please find this answer

  • 11
Please find this answer

  • -1
(a4+b4) =(a2+b2) (a2_b2)
  • -1
Dear student.

  • 1
a+ b4  = ( a+b)(a3 - a2b + ab2 - b3)
  • -1
8 b e i g h t b
  • 0
HOPE IT WILL HELP......😀😀😀

  • 18
(a^2+b^2)^2+2(ab)^2
  • 4
a4+b4 = (a2+b2)2 - 2a2b2
  • 0
[a2 + b2] [a2-b2] this might be
 
  • -1
4(a+b)
  • 0
a^4+b^4= (a^2+b^2)^2-2a^2b^2
  • 1
a^4+b^4=(a2+b2)2-4ab
  • 0
A2 + B2 + 1 ka whole square
  • 0
(a2 + b2)2 - 2a2b2
  • 0
Please find this answer

  • -1
Gudyfysyfydyftftcj guzuif
  • -2
(a2 + b2)2
 
  • 1
(a2 + b2)2 = a4 + b4 + 2ab2
Therefore, a+ b4 = (a2 + b2)2 - 2a2b2
  • 0
Hmari thodi tarif kr dena ab
Hamne aapka brilliant question solve kiya hai aakhir kaar

  • -2
Please find this answer

  • -1
ab^4
  • -1
Please find this answer

  • -1
Please find this answer

  • -1
Hey mate your answer is (a2+b2)2-2(ab)2
  • 4
Your answer...

  • 0
( a2 + b2)2 this is the answer .  OR  ( a⁴ + b⁴ ) = ( a² + b² )² - 2a²b²

OR

( a⁴ + b⁴ ) = ( a² - b² )² + 2a²b²

 
  • 0
Please find this answer

  • 0
Please find this answer

  • 3
SAME AS JAYAKRISHNAN
  • 0
(a2-b2)2-2a2-b2
  • -1
4 square + 4 AV + 2 b square
  • 0
(a^2+b^2)^2 + 2a^2b^2
  • 0
Formula of a4 + b4 =
a2+b2?2a square bsquare
A2?B2+2 asquare bsquarw
  • -1
if you are brilliant what is the formula of A4 + B4
  • 0
Lkhyuhgh
  • 0
Please find this answer

  • 0
Please find this answer

  • 1
soory i dont the answer ton the question
e
  • 0
Well, using the binomial formula, you cud fig it out yourslf

Binomial form : (x+a)^n = nc0*x^n*a^0 +.......+ncn*x^0*a^n
  • 0
4(a+b)
  • 0
4(a+b) is answer for this question
  • 0
i dont know
but i am brilliant
  • 0
4(a+b).
  • 0
a4-b4=(a-b)(a+b)(a2+b2)
  • 0
a4+b4= (a2+b2)2 -2a2b2
  • 0
(a2+b2)2
(A square+ B square)whole square
  • 0
4(a+b)
  • 0
Mujje support material me sare answer solve chahiye
  • 0
(a^2 - root 2ab + b^2)(a^2 + root 2ab + b^2)
  • 1
take it easy

  • 0
Whol number

  • 0
4(a+b)
  • 0
Derive yourself
  • 0
It depends what you call a 'formula'. Some useful standard results are called formulae. For ex -> a2 - B2 = (a+b).(a-b). This is called factorise form (or formula) of a2 - b2. It depends on the circumstances of the question to use it or not.

Similarly, a4 + b4 = (a2+b2)^2 - 2a^2b^2
OR, it is also equals to (a2-b2)^2 + 2a^2b^2
  • 0
a4 + b4 = 4(a +b)
  • 0
a?+b?=(a?+b?)? - 2a?b?
  • 0
(a2+b2)2-2a2b2
  • 0
A+b 8
  • 0
a4+b4=
  • 0
?a4+b4?= (a2+b2)2?- 2a2b2
  • 0
a+ b 4 = (a2+b2)+2a2b2
 
  • 1
a4+b4= (a2+b2)2-2a2b2
  • 0
a4?-?b4?=( a2)^2 -( b2)^2...
  • 1
4(a+b)
  • 0
(a^2+b ^2)^2-2a^2b^2 is the answer to the question ??
  • 0
a2+b2= (a2+b2)2- 2a2b2
  • 0
(a?+b?) ??2a?b?
  • 0
(?a2)^2 + (?b2)^2
  • 0
(a+b)+(4+4)
(a+b)+(8)
(a+b+8)
8(a+b)
8a+8b
16a+b
  • 0
a4+b4 =
a4= -b4
So a= -b
  • 0
a square + b square
  • 0
a^4 + 2a^2b^2 + b^4
  • 0
 a4+b4 = (a2+b2)- 2a2b2
  • 0
See that????

  • 0
a4+b4=8ab
  • 0
Please find this answer

  • 0
a square minus b square ka whole power square + 2 a square b square
  • -1
a4+4a3b+6a2b2+4ab3+b4
  • -1
??????????????
  • -1
Is it right?????????

  • 0
The formula for a4+b4
= a^4+2a^2b^2+b^4.
  • 0
Please find this answer

  • 0
I am not more brilliant but I know many things to make me brilliant this is your answer

  • 0
a4+b4+2a2b2
  • 0
Please find this answer

  • 1
4(a+b
  • 0
4(a+b)
  • 0
Kya Main Mujhe padha Sakte
  • 0
The formula of a4+ b4=( a2+ b2)2
  • 0
4(a+b)
  • 0
a4+b4=(a^2+b^2)^2 - 2a2b2
=(a^2+root2 ab+ b^2)(a^2 - root 2 ab+b^2)
See if it helps
  • 0
a^4+2a^2b^2+ b^4
  • 0
Please find this answer

  • 0
4(a+b)
  • 0
question mark????
  • 0
C 12
  • 0
2 . 2,3 3,4 4,5 4,9. 8,15
  • 0
Sir g agar hamain Pat's hota toh hum na likhte
  • 0
a^4+b^4=a^4+2a^2b^2+b^4
  • 0
Hhujjj
  • 0
Please find this answer

  • 1
before
  • 0
Prove that root 3 and root 5 is integer
  • 0
A4+b4=a^4+2a^2b^2+b^4

  • 0
(a+b)(a-b)(a2+b2)
  • 0
Please find this answer

  • 0
natak Academy School comments
  • 0
(a4+b4)=(a2+b2)2
  • 0
multi ply
  • 0
matric result

  • 0
Std 10 gujarati medium
  • 0
Please find this answer

  • 0
Do no
  • 0
Mujhe yah Sare question Nahin Samajh Mein Aaye

  • 0
dear friend
the formula of a^4-b^4=(a^2)^2-(a^2)^2
No any formula of a 4+b 4
ok
  • 0
(a to the power 2 + ab?2+ b to the power 2)(a to the power 2-ab?2+b to the power 2
  • 0
Std 10 chapter 1 question 4
  • 0
a^2 +?b^2 = (a+b) (a+b) = a(a+b) +?b?(a+b) = a^2 + ab +ba +?b^2 = a^2 + 2ab +?b^2. So now to your question?. = a^4?+ 2a^2b^2 +?b^4
  • 0
Are u asking abt the identity??
  • 0
a^4+b^4=(a^2+b^2)^2
  • 0
X2+bx+ax+ab
  • 0
Prithvi ke kul budget
  • 0
Please find this answer

  • 0
Aa gaya answer????

  • 0
b =1
  • 0
board paper 2020
  • 0
Kanada
  • 0
Please find this answer

  • 0
10th results
  • 0
Please find this answer

  • 0
Good question ????
  • 0
a^2+ab?2+b^2)(a^2-ab?2+b^2).
  • 0
Any qustion
  • 0
add to sab
  • 0
Subclass join hone kaise karen class join kaise karenge
  • 0
Please find this answer

  • 0
all subject in SSLC in all subject in reading and writing in please in wait
  • 0
Please find this answer

  • 0
Please sir college 2nd year inter class please
  • 0
a plus b ka whole square
  • 0
(a2+b2)2
  • 0
As we write (a+b)
so here as the question says 

a4+b4

So we can also write it as this ways

(a2+b2)2

Thanks 
Regards 
  • 0
a4+b4=  (a2+b2)2    
a4+b4+2a2b2

Thanks 
Regards
  • 0
Please find this answer

  • 0
Chapter ke Questions Answer

  • 0
a?+b?=(a?+b?)?-2a?b?
  • 0
a+b+ab
  • 0
If you are brilliant what is the answer for 5 +a 5
  • 0
(a² + 2½ab + b²)(a² - 2½ab + b²)
  • 0
maths ka question answer
  • 0
B=8 is formula
  • 0
Class 12ki class available h account ki
  • 0
4(1+b)
  • 1
a4+b4?= (a2+b2)2?- 2a2b2 this is the answer ok
  • 0
4+b 4-b
  • 0
Hi teacher
  • 0
Please find this answer

  • 0
000054544580
  • 0
L.C.M and H.C.F

  • 0
What are you looking for?