#
In the following figure AC//PS//QR and PQ//DB//SR PROVE THAT area of quadrilateral PQRS=2×Area of quadrilateral ABCD

$\mathbf{16}\mathbf{.}\mathbf{}\mathrm{In}\mathrm{the}\mathrm{following}\mathrm{figure}\mathrm{AC}\parallel \mathrm{PS}\parallel \mathrm{QR}\mathrm{and}\mathrm{PQ}\parallel \mathrm{DB}\parallel \mathrm{SR}.\phantom{\rule{0ex}{0ex}}\mathrm{Prove}\mathrm{that}:\phantom{\rule{0ex}{0ex}}\mathrm{Area}\mathrm{of}\mathrm{quadilateral}\mathrm{PQRS}=2\times \mathrm{Area}\mathrm{of}\mathrm{quadilateral}\mathrm{ABCD}$

This question has not been answered yet!

#### Don't worry! You can check out similar questions with solutions below

- ...
**quadrilateral**PXYQ.**PQ**||XY [by construction] PX||QY [**PS**||**QR**... - ... 30. Diagonals
**AC**and BD of a**quadrilateral****ABCD**intersect at ... - ... the
**figure**given below,**PQRS**is a cyclic**quadrilateral**,**PQ**... - ...
**SR**and**PS**=**QR**.**PS**and**QR**are extended to meet at O.**Prove**... - ...
**PQR**,**PQ**=**QR**. S is any point on side PR.**Prove**that**SR**...