In which plant will you look for mycorrhiza and corolloid roots? Also explain what these terms mean.

For mycorrhiza you can to look to Pinus roots having mainly basidiomycetes fungal partner
For coralloid roots you can look to Cycas root having blue green algae Anaebaena cycadae
Mycorrhiza is the term used to indicate the symbiotic association between fungus and roots of higher plants. Mycorrhizal roots show a wooly covering and lack root caps and root hairs unlike normal roots. The fungal partner obtains nourishment from the cortical cells of the root and also depends upon the plant for shelter. The mycorrhizal hyphae help in increasing the surface area for absorption, so enable the plants in getting the enhanced supply of water, nitrogen, phosphorus and other minerals from the soil.
 Coralloid roots refer to the symbiotic relationship between  roots of Cycas  and cyanobacteria (i.e., blue-green algae) which are found in the cortical regions of coralloid roots. This root is produced at the base of stem and protrudes out over the ground. Algal partner fixes the atmospheric nitrogenin association with plant.

  • 11
Mycorrhiza From Wikipedia, the free encyclopedia Jump to: navigation, search It has been suggested that Mycorrhizal networks be merged into this article. (Discuss) Proposed since April 2013. This mycorrhiza includes a fungus of the genus Amanita

A mycorrhiza (Gk. μυκÏŒς, mykós, "fungus" and ριζα, riza, "roots",[1] pl. mycorrhizae or mycorrhizas) is a symbiotic (generally mutualistic, but occasionally weakly pathogenic) association between a fungus and the roots of a vascular plant.[2]

In a mycorrhizal association, the fungus colonizes the host plant's roots, either intracellularly as in arbuscular mycorrhizal fungi (AMF or AM), or extracellularly as in ectomycorrhizal fungi. They are an important component of soil life and soil chemistry.

  • 1 Mutualist dynamics
    • 1.1 Sugar-water/mineral exchange
    • 1.2 Mechanisms
    • 1.3 Disease and drought resistance
    • 1.4 Colonization of barren soil
    • 1.5 Resistance to toxicity
  • 2 Occurrence of mycorrhizal associations
  • 3 Types of mycorrhiza
    • 3.1 Endomycorrhiza
    • 3.2 Ectomycorrhiza
    • 3.3 Ericoid mycorrhiza
  • 4 Discovery
  • 5 See also
  • 6 References
  • 7 External links
Mutualist dynamics

Mycorrhizas form a mutualistic relationship with the roots of most plant species. While only a small proportion of all species has been examined, 95% of those plant families are predominantly mycorrhizal.[3] They are named after their presence in the plant's rhizosphere (root system).

Sugar-water/mineral exchange

This mutualistic association provides the fungus with relatively constant and direct access to carbohydrates, such as glucose and sucrose.[4] The carbohydrates are translocated from their source (usually leaves) to root tissue and on to the plant's fungal partners. In return, the plant gains the benefits of the mycelium's higher absorptive capacity for water and mineral nutrients due to the comparatively large surface area of mycelium: root ratio, thus improving the plant's mineral absorption capabilities.[5]

Plant roots alone may be incapable of taking up phosphate ions that are demineralized in soils with a basic pH. The mycelium of the mycorrhizal fungus can, however, access these phosphorus sources, and make them available to the plants they colonize.[6] Nature, according to C.Michael Hogan, has adapted to this critical role of phosphate, by allowing many plants to recycle phosphate, without using soil as an intermediary. For example, in some dystrophic forests large amounts of phosphate are taken up by mycorrhizal hyphae acting directly on leaf litter, bypassing the need for soil uptake.[7]Inga alley cropping, proposed as an alternative to slash and burn rainforest destruction,[8] relies upon Mycorrhiza within the Inga Tree root system to prevent the rain from washing phosphorus out of the soil.[9] In some cases, the transport of water, carbon, and nutrients could be done directly from plant to plant through mycorrhizal networks that are underground hyphal networks created by mycorrhizal fungi that connect individual plants together.[10]

Suillus tomentosus, a fungus, produces specialized structures, known as tuberculate ectomycorrhizae, with its plant host lodgepole pine (Pinus contorta var. latifolia). These structures have in turn been shown to host nitrogen fixing bacteria which contribute a significant amount of nitrogen and allow the pines to colonize nutrient-poor sites.[11]

Mechanisms Leccinum aurantiacum, an ectomycorrhizal fungus

The mechanisms of increased absorption are both physical and chemical. Mycorrhizal mycelia are much smaller in diameter than the smallest root, and thus can explore a greater volume of soil, providing a larger surface area for absorption. Also, the cell membrane chemistry of fungi is different from that of plants (including organic acid excretion which aids in ion displacement[12]). Mycorrhizas are especially beneficial for the plant partner in nutrient-poor soils.[13]

Disease and drought resistance

Mycorrhizal plants are often more resistant to diseases, such as those caused by microbial soil-borne pathogens,[14][15] and are also more resistant to the effects of drought.[16][17][18]

Colonization of barren soil

Plants grown in sterile soils and growth media often perform poorly without the addition of spores or hyphae of mycorrhizal fungi to colonise the plant roots and aid in the uptake of soil mineral nutrients.[19] The absence of mycorrhizal fungi can also slow plant growth in early succession or on degraded landscapes.[20] The introduction of alien mycorrhizal plants to nutrient-deficient ecosystems puts indigenous non-mycorrhizal plants at a competitive disadvantage.[21]

Resistance to toxicity

Fungi have been found to have a protective role for plants rooted in soils with high metal concentrations, such as acidic and contaminated soils. Pine trees inoculated with Pisolithus tinctorius planted in several contaminated sites displayed high tolerance to the prevailing contaminant, survivorship and growth. One study discovered the existence of Suillus luteus strains with varying tolerance of zinc. Another study discovered that zinc-tolerant strains of Suillus bovinus conferred resistance to plants of Pinus sylvestris. This was probably due to binding of the metal to the extramatricial mycelium of the fungus, without affecting the exchange of beneficial substances.[21]

Occurrence of mycorrhizal associations

At around 400 million years old, the Rhynie chert contains the earliest fossil assemblage yielding plants preserved in sufficient detail to detect mycorrhizas - and they are indeed observed in the stems of Aglaophyton major.[22]

Mycorrhizas are present in 92% of plant families studied (80% of species),[23] with arbuscular mycorrhizas being the ancestral and predominant form,[23] and indeed the most prevalent symbiotic association found in the plant kingdom.[4] The structure of arbuscular mycorrhizas has been highly conserved since their first appearance in the fossil record,[22] with both the development of ectomycorrhizas, and the loss of mycorrhizas, evolving convergently on multiple occasions.[23]

Types of mycorrhiza Arbuscular mycorrhizal wheat

Mycorrhizas are commonly divided into ectomycorrhizas and endomycorrhizas. The two types are differentiated by the fact that the hyphae of ectomycorrhizal fungi do not penetrate individual cells within the root, while the hyphae of endomycorrhizal fungi penetrate the cell wall and invaginate the cell membrane. Additionally, many plants in the order Ericales form a third type, ericoid mycorrhizas, while some members of the Ericales form arbutoid and monotropoid mycorrhizas.[24][25] All orchids are myco-heterotrophic at some stage during their lifecycle and form orchid mycorrhizas with a range of basidiomycete fungi.

Endomycorrhiza Main article: Arbuscular mycorrhiza

Endomycorrhizas are variable and have been further classified as arbuscular, ericoid, arbutoid, monotropoid, and orchid mycorrhizas.[26]Arbuscular mycorrhizas, or AM (formerly known as vesicular-arbuscular mycorrhizas, or VAM), are mycorrhizas whose hyphae enter into the plant cells, producing structures that are either balloon-like (vesicles) or dichotomously branching invaginations (arbuscules). The fungal hyphae do not in fact penetrate the protoplast (i.e. the interior of the cell), but invaginate the cell membrane. The structure of the arbuscules greatly increases the contact surface area between the hypha and the cell cytoplasm to facilitate the transfer of nutrients between them.

Arbuscular mycorrhizas are formed only by fungi in the division Glomeromycota. Fossil evidence[22] and DNA sequence analysis[27] suggest that this mutualism appeared 400-460 million years ago, when the first plants were colonizing land. Arbuscular mycorrhizas are found in 85% of all plant families, and occur in many crop species.[23] The hyphae of arbuscular mycorrhizal fungi produce the glycoprotein glomalin, which may be one of the major stores of carbon in the soil. Arbuscular mycorrhizal fungi have (possibly) been asexual for many millions of years and, unusually, individuals can contain many genetically different nuclei (a phenomenon called heterokaryosis).[28]

Ectomycorrhiza Ectomycorrhizal beech Main article: Ectomycorrhiza

Ectomycorrhizas, or EcM, are typically formed between the roots of around 10% of plant families, mostly woody plants including the birch, dipterocarp, eucalyptus, oak, pine, and rose[23] families, orchids,[29] and fungi belonging to the Basidiomycota, Ascomycota, and Zygomycota. Some EcM fungi, such as many Leccinum and Suillus, are symbiotic with only one particular genus of plant, while other fungi, such as the Amanita, are generalists that form mycorrhizas with many different plants.[30] An individual tree may have 15 or more different fungal EcM partners at one time.[31] Thousands of ectomycorrhizal fungal species exist, hosted in over 200 genera. A recent study has permitted to conservatively estimate global ectomycorrhizal fungal species richness around 7750 species, although, on the basis of estimates of knowns and unknowns in macromycete diversity, a final estimate of ECM species richness would likely be between 20000 and 25000.[32]

Ectomycorrhizas consist of a hyphal sheath, or mantle, covering the root tip and a Hartig net of hyphae surrounding the plant cells within the root cortex. In some cases the hyphae may also penetrate the plant cells, in which case the mycorrhiza is called an ectendomycorrhiza. Outside the root, the fungal mycelium forms an extensive network within the soil and leaf litter.

Nutrients can be shown to move between different plants through the fungal network. Carbon has been shown to move from paper birch trees into Douglas-fir trees thereby promoting succession in ecosystems.[33] The ectomycorrhizal fungus Laccaria bicolor has been found to lure and kill springtails to obtain nitrogen, some of which may then be transferred to the mycorrhizal host plant. In a study by Klironomos and Hart, Eastern White Pine inoculated with L. bicolor was able to derive up to 25% of its nitrogen from springtails.[34][35]

The first genomic sequence for a representative of symbiotic fungi, the ectomycorrhizal basidiomycete Laccaria bicolor, has been published.[36] An expansion of several multigene families occurred in this fungus, suggesting that adaptation to symbiosis proceeded by gene duplication. Within lineage-specific genes those coding for symbiosis-regulated secreted proteins showed an up-regulated expression in ectomycorrhizal root tips suggesting a role in the partner communication. Laccaria bicolor is lacking enzymes involved in the degradation of plant cell wall components (cellulose, hemicellulose, pectins and pectates), preventing the symbiont from degrading host cells during the root colonisation. By contrast, Laccaria bicolor possesses expanded multigene families associated with hydrolysis of bacterial and microfauna polysaccharides and proteins. This genome analysis revealed the dual saprotrophic and biotrophic lifestyle of the mycorrhizal fungus that enables it to grow within both soil and living plant roots.

Ericoid mycorrhiza An ericoid mycorrhizal fungus isolated from Woollsia pungens[37] Main article: Ericoid mycorrhiza

Ericoid mycorrhizas are the third of the three more ecologically important types, They have a simple intraradical (grow in cells) phase, consisting of dense coils of hyphae in the outermost layer of root cells. There is no periradical phase and the extraradical phase consists of sparse hyphae that don't extend very far into the surrounding soil. They might form sporocarps (probably in the form of small cups), but their reproductive biology is little understood.[24]

Ericoid mycorrhizas have also been shown to have considerable saprotrophic capabilities, which would enable plants to receive nutrients from not-yet-decomposed materials via the decomposing actions of their ericoid partners.[38]


Associations of fungi with the roots of plants have been known since at least the mid-19th century. However early observers simply recorded the fact without investigating the relationships between the two organisms.[39] This symbiosis was studied and described by Franciszek Kamieński in 18791882.[40] Further research was carried out by Albert Bernhard Frank, who introduced the term mycorrhiza in 1885.[41]

Cycad From Wikipedia, the free encyclopedia Jump to: navigation, search CycadophytaTemporal range: Early PermianRecent PreЄ Є O S D C P T J K Pg N Cycas rumphii with old and new male cones. Scientific classification Kingdom: Plantae Division: CycadophytaBessey 1907: 321.[1] Class: CycadopsidaBrongn.[2] Order: CycadalesDumort. Families

Cycadaceae cycas familyStangeriaceae stangeria familyZamiaceae zamia family

Cycads /ˈsaɪkædz/ are seed plants typically characterized by a stout and woody (ligneous) trunk with a crown of large, hard and stiff, evergreen leaves. They usually have pinnate leaves. The individual plants are either all male or all female (dioecious). Cycads vary in size from having trunks from only a few centimeters to several meters tall. They typically grow very slowly and live very long, with some specimens known to be as much as 1,000 years old. Because of their superficial resemblance, they are sometimes confused with and mistaken for palms or ferns, but are only distantly related to either.

Cycads are found across much of the subtropical and tropical parts of the world. They are found in South and Central America (where the greatest diversity occurs), Mexico, the Antilles, southeastern United States, Australia, Melanesia, Micronesia, Japan, China, Southeast Asia, India, Sri Lanka, Madagascar, and southern and tropical Africa, where at least 65 species occur. Some can survive in harsh semidesert climates (xerophytic), others in wet rain forest conditions, and some in both.[citation needed] Some can grow in sand or even on rock, some in oxygen-poor, swampy, bog-like soils rich in organic material, and some in both.[citation needed] Some are able to grow in full sun, some in full shade, and some in both.[citation needed] Some are salt tolerant (halophytes).

Cycads belong to the biological division Cycadophyta. The three extant families of cycads are Cycadaceae, Stangeriaceae, and Zamiaceae. Though they are a minor component of the plant kingdom today, during the Jurassic period, they were extremely common. They have changed little since the Jurassic, compared to some major evolutionary changes in other plant divisions.

Cycads are gymnosperms (naked seeded), meaning their unfertilized seeds are open to the air to be directly fertilized by pollination, as contrasted with angiosperms, which have enclosed seeds with more complex fertilization arrangements. Cycads have very specialized pollinators, usually a specific species of beetle. They have been reported to fix nitrogen in association with a cyanobacterium living in the roots. These blue-green algae produce a neurotoxin called BMAA that is found in the seeds of cycads. This neurotoxin may enter a human food chain as the cycad seeds may be eaten by bats, and humans may eat the bats. It is hypothesized that this is a source of some neurological diseases in humans.[3]

  • 1 Origins
  • 2 Taxonomy
  • 3 Identification
  • 4 History
  • 5 Uses
  • 6 Distribution
  • 7 Speciation
  • 8 Extinction
  • 9 Conservation
  • 10 Horticulture
  • 11 See also
  • 12 References
  • 13 External links

The cycad fossil record dates to the early Permian, 280 million years ago (mya). There is controversy over older cycad fossils that date to the late Carboniferous period, 300325 mya. One of the first colonizers of terrestrial habitats, this clade probably diversified extensively within its first few million years, although the extent to which it radiated is unknown because relatively few fossil specimens have been found. The regions to which cycads are restricted probably indicate their former distribution in the Pangea before the supercontinents Laurasia and Gondwana separated.[4] Recent studies have indicated the common perception of existing cycad species as living fossils is largely misplaced, with only Bowenia dating to the Cretaceous or earlier. Although the cycad lineage itself is ancient, most extant species have evolved in the last 12 million years.[5]

The family Stangeriaceae (named for Dr. William Stanger, 18111854), consisting of only three extant species, is thought to be of Gondwanan origin, as fossils have been found in Lower Cretaceous deposits in Argentina, dating to 70135mya. The family Zamiaceae is more diverse, with a fossil record extending from the middle Triassic to the Eocene (54200mya) in North and South America, Europe, Australia, and Antarctica, implying the family was present before the break-up of Pangea. The family Cycadaceae is thought to be an early offshoot from other cycads, with fossils from Eocene deposits (3854mya) in Japan and China, indicating this family originated in Laurasia. Cycas is the only genus in the family and contains 99species, the most of any cycad genus. Molecular data have recently shown Cycas species in Australasia and the east coast of Africa are recent arrivals, suggesting adaptive radiation may have occurred. The current distribution of cycads may be due to radiations from a few ancestral types sequestered on Laurasia and Gondwana, or could be explained by genetic drift following the separation of already evolved genera. Both explanations account for the strict endemism across present continental lines.

Leaves and cone of Encephalartos sclavoi The fossil cycad Zamites feneonis Taxonomy

About 305 species are described, in 1012genera and two or 3 families of cycads (depending on taxonomic viewpoint). The classification below, proposed by Dennis Stevenson in 1992, is based upon a hierarchical structure based on cladistic analyses of morphological, anatomical, karyological, physiological and phytochemical data.

The number of species in the clade is low compared to the number in most other plant phyla. However, paleobotanical and molecular research indicates the diversity was greater in the history of the phylum. Fossil evidence shows the structural diversity in Mesozoic cycad pollen "considerably exceeds that seen in surviving genera today". The impacts of extinction on diversity are highlighted below. The disparity in molecular sequences is very high between the three main lineages of cycads, implying genetic diversity in the clade was once high, but this fact has led to major disagreements about the divisions within the Cycadales.

The number of described cycad species has doubled in the past 25 years, mostly due to improved sampling and further exploration. Experts infer there may still be about 100 undescribed species, based on the rate of discovery. These are likely to be in Asia and South America, where areas of endemism are highest. Diversity hotspots also occur in Australia, South Africa, Mexico, China and Vietnam, which together account for more than 70% of the worlds cycad species. The taxonomy of the Cycadophyta is, however, now stabilizing.

Cycad systematists reject the biological/isolation species concept, because some clearly defined cycad species can interbreed and produce fertile offspring; this character is thus not disproportionately weighted when determining species barriers. The phenetic species concept, which states that a species is defined based on overall similarities with other individuals of the same species combined with a significant gap in variation with other species, is also rejected. Most cycad taxonomists agree on a modified version of the evolutionary species concept, The classification below is taken from Stevenson (1992).

Suborder CycadineaeFamily Cycadaceae Subfamily Cycadoideae Cycas. About 105 species in the Old World from Africa east to southern Japan, Australia and the western Pacific Ocean islands; type: C. circinalis L.; see also C. pruinosa and C. revolutaSuborder ZamiineaeFamily Stangeriaceae Subfamily Stangerioideae Stangeria. One species in southern Africa; type: S. eriopus (Kunze) BaillonSubfamily Bowenioideae Bowenia. Two species in Queensland, Australia; type: B. spectabilis Hook. ex Hook. f.Family Zamiaceae Subfamily Encephalartoideae Tribe Diooeae Dioon. 13 species in Mexico and Central America; type: D. edule LindleyTribe Encephalarteae Subtribe Encephalartinae Encephalartos. About 66species in southeast Africa; type: E. friderici-guilielmi Lehmann, E. transvenosus (Modjadji cycad)Subtribe Macrozamiinae Macrozamia. About 41species in Australia; type: M. riedlei (Fischer ex Gaudichaud) C.A. GardnerLepidozamia. Two species in eastern Australia; type: L. peroffskyana RegelSubfamily Zamioideae Tribe Ceratozamieae Ceratozamia. 26 species in southern Mexico and Central America; type: C. mexicana Brongn.Tribe Zamieae Subtribe Microcycadinae Microcycas. One species in Cuba; type: M. calocoma (Miquel) A. DC.Subtribe Zamiinae Chigua. Two species in Colombia; type: C. restrepoi E. StevensonZamia. About 65 species in the New World from Georgia, USA south to Bolivia; type: Z. pumila L.; see also Z. furfuracea

Cycads are most closely related to the extinct Bennettitales, and are also relatively close relatives to the Ginkgoales, as shown in the following phylogeny (Crepet 2000):














Traditional view Modern view Identification Cycads have a rosette of pinnate leaves around cylindrical trunk

Cycads have a cylindrical trunk which usually does not branch. Leaves grow directly from the trunk, and typically fall when older, leaving a crown of leaves at the top. The leaves grow in a rosette form, with new foliage emerging from the top and center of the crown. The trunk may be buried, so the leaves appear to be emerging from the ground, so the plant appears to be a basal rosette. The leaves are generally large in proportion to the trunk size, and sometimes even larger than the trunk.

The leaves are pinnate (in the form of bird feathers, pinnae), with a central leaf stalk from which parallel "ribs" emerge from each side of the stalk, perpendicular to it. The leaves are typically either compound (the leaf stalk has leaflets emerging from it as "ribs"), or have edges (margins) so deeply cut (incised) so as to appear compound. Some species have leaves that are bipinnate, which means the leaflets each have their own subleaflets, growing in the same form on the leaflet as the leaflets grow on the stalk of the leaf (self-similar geometry).

The three families can be identified by looking at the central stalk of the leaf. Each family has at least one vein running up the leaf stalk from bottom to top (longitudinal). The Cycadaceae have only one vein in the center of the leaf stalk (central vein), but no veins on the stalklets of the leaflet (no lateral veins). The Stangeriaceae have only one central vein, but with lateral veins, also. The Zamiaceae have more than one central vein, and they are parallel to each other.


Modern knowledge about cycads began in the 9th century with the recording by two Arab naturalists that the genus Cycas was used as a source of flour in India. Later, in the 16th century, Antonio Pigafetta, Fernão Lopes de Castanheda and Francis Drake found Cycas plants in the Moluccas, where the seeds were eaten. The first report of cycads in the New World was by Giovanni Lerio in his 1576 trip to Brazil, where he observed a plant named ayrius by the indigenous people; this species is now classified in the genus Zamia.

Cycads belonging to the genus Encephalartos were first described by Johann Georg Christian Lehmann in 1834. The name is derived from the Greek articles "en", meaning "in", "cephale", meaning "head", and "artos", meaning "bread".

Throughout the 18th-19th centuries, discoveries of several species were reported by numerous naturalist researchers and discoverers traveling throughout the world. One of the most notable researchers of cycads was American botanist C.J. Chamberlain whose work is noteworthy for the quantity of data and the novelty of his approach to studying cycads. His 15 years of travel throughout Africa, the Americas and Australia to observe cycads in their natural habitat resulted in his 1919 publication of The Living Cycads which remains current in its synthesis of taxonomy, morphology and reproductive biology of cycads, most of which was obtained from his original research. His 1940s monograph on the Cycadales, though never published (most likely because of his death) was never used by botanists. The most recent complete work on the cycads is the book by Norstog and Nicholls entitled "the Biology of the Cycads" published in 1998.

Uses Popular landscaping plants in Wuhan, cycads need some winter protection in central China's winters

The starch obtained from the stems of certain species is still used as food by some indigenous tribes. Tribal people also grind and soak the seeds to remove the nerve toxins that may be present, making the food source generally safe to eat, although often not all the toxin is removed. In addition, consumers of bush meat may face a health threat as the meat comes from game which may have eaten cycad seeds and carry traces of the toxin in body fat.

Cycad, known as sotetsu (Jap. ソテツ, Kanji: 蘇鉄) in Japanese, was traditionally a famine food in Okinawa - a last resort to turn to for sustenance during particularly difficult times.[6] A period of particularly devastating poverty and famine in the 1920s, caused in large part by Japanese economic policies in the island prefecture, is known as "cycad hell" or sotetsu jigoku.[7]

Cycad meal known as Eenthu in Malayalam is a common food in Kerala. Traditionally, the seeds were sliced and kept in direct sunlight or near the hearth during rainy season to promote drying. The drying process is carried out to reduce the toxin levels and as a means of preservation. The outer shell is subsequently removed and inner portion is ground into a flour. Properly dried cycad seed flour may be stored for several years without deterioration.

Food items like Puttu, Eenthu kanji, Eenthu payasam etc. are made out of cycad seed power.These food items are particularly prepared in heavy rainy seasons in Kerala.

Cycad leaves are used to decorate venues during festivals, marriages and other community celebrations.

There is some indication that the regular consumption of starch derived from cycads is a factor in the development of Lytico-Bodig disease, a neurological disease with symptoms similar to those of Parkinson's disease and ALS. Lytico-Bodic and its potential connection to cycasin ingestion is one of the subjects explored in Oliver Sacks' 1997 book Island of the Colourblind. Cattle that graze in pastures containing cycads may ingest the leaves and seeds and develop the neurologic syndrome of cycad toxicosis known as zamia staggers.

In Vanuatu, where the cycad is known by the Bislama name namele, the tree has deep customary and spiritual significance. A single cycad leaf may be used as a taboo sign, while a pair of crossed cycad leaves is a peace sign and appears on the Vanuatu flag. The breaking off of fronds from a cycad leaf is used in traditional contexts as an aid to counting.

Distribution Approximate world distribution of living Cycadales

Overall species diversity peaks at 17Ëš 15"N and 28Ëš 12"S, with a minor peak at the equator. There is therefore not a latitudinal diversity gradient towards the equator but towards the tropics. However, the peak in the northern tropics is largely due to Cycas in Asia and Zamia in the New World, whereas the peak in the southern tropics is due to Cycas again, and also to the diverse genus Encephalartos in southern and central Africa and Macrozamia in Australia. Thus, the distribution pattern of cycad species with latitude appears to be an artifact of the geographical isolation of cycad genera, and is dependent on the remaining species in each genus that did not follow the extinction pattern of their ancestors. Cycas is the only genus that has a broad geographical range and can thus be used to infer that cycads tend to live in the upper and lower tropics. This is probably because these areas have a drier climate with relatively cool winters; while cycads require some rainfall, they appear to be partly xerophytic. Potted specimens are found and thrive in global locations such as Canada, Russia, Finland and Chile.


There are no documented cases of sympatric speciation in cycads and allopatry appears to be the most common form of speciation in the group. This is difficult to study. as they are long-lived plants, so natural experiments have been investigated. One example is Cycas seemannii, which occurs only in Fiji, New Caledonia, Tonga and Vanuatu. Genetic diversity within populations was found to be significantly lower than between islands, suggesting that genetic drift is a likely mechanism for speciation, and is probably currently occurring between the isolated populations. Allopatry has also been proposed as the mechanism of speciation in Dioon, which predominantly occurs in Mexico. The many rivers that have shaped the region, and repeated glaciation and consequent disjunction, are thought to have been important in reproductive isolation not only in Dioon but in many other plant and animal taxa. Parapatric speciation may also have occurred, especially as cycads are pollinated by insects rather than by wind (Stevenson et al. 1998). As the range of the species grows, the individuals furthest apart are prevented from interbreeding, as insects have relatively small ranges and will not pollinate between these plants. If sympatric speciation has occurred in cycads, this would most likely be because of a host shift in pollinators, due to the very fact that cycads are uniformly dioecious.


The probable former range of cycads can be inferred from their global distribution. For example, the family Stangeriaceae only contains three extant species in Africa and Australia. Diverse fossils of this family have been dated to 135mya, indicating that diversity may have been much greater before the Jurassic and late Triassic mass extinction events. However, the cycad fossil record is generally poor and little can be deduced about the effects of each mass extinction event on their diversity.

Instead, correlations can be made between the number of extant gymnosperms and angiosperms. It is likely that cycad diversity was affected more by the great angiosperm radiation in the mid-Cretaceous than by extinctions. Very slow cambial growth was first used to define cycads, and because of this characteristic the group could not compete with the rapidly growing, relatively short-lived angiosperms, which now number over 250,000species, compared to the 947remaining gymnosperms. It is surprising that the cycads are still extant, having been faced with extreme competition and five major extinctions. The ability of cycads to survive in relatively dry environments where plant diversity is generally lower, may explain their long persistence and longevity.

Conservation Encephalartos woodii is extinct in the wild, and all living specimens are clones of the type.

In recent years, many cycads have been dwindling in numbers and may face risk of extinction because of theft and unscrupulous collection from their natural habitats, as well as from habitat destruction.

About 23% of the 305extant cycad species are either critically endangered or endangered, and 15% are vulnerable. Thus, 38% of cycads are on the IUCN Red List (2004), and the other 62% are in the Least concern or Near Threatened category (i.e. not actually on the Red List), or are data deficient. This value has changed dramatically within the past few years; 46% of cycads were on the 1978 Red List, and this rose to 82% in 1997. This was largely due to the recent discovery of over 150 new species, disagreements about classification, and uncertainty. This has not been helpful for conservation planning for the group.

Zamia in the New World, Cycas in Asia and Encephalartos in Africa are the most threatened genera. This pattern reflects the pressures on species in these regions. At least two species, Encephalartos woodii and Encephalartos relictus (both from Africa), are confirmed extinct in the wild. Cycads are long-lived with infrequent reproduction, and most populations are small, putting them at risk of extinction from habitat destruction and stochastic environmental events. Regionally, Australian cycads are the least at risk, as they are locally common and habitat fragmentation is low. However, land management with fire is thought to be a threat to Australian species. African cycads are rare and are thought to be naturally decreasing due to small population sizes, and there is controversy over whether to let natural extinction processes act on these cycads.

All cycads are in the CITES appendix appearing under the heading Plant Kingdom and under three family names, Cycadaceae, Stangeriaceae and Zamiaceae.

All cycads are CITES APPENDIX II except the following, in APPENDIX I:

  • Cycas beddomei
  • Stangeria eriopus
  • All Ceratozamia
  • All Chigua
  • All Encephalartos
  • Microcycas calocoma

Cycad seeds from species on APPENDIX II are not CITES regulated. APPENDIX I seeds are treated the same as the plants.

Horticulture A Sago Cycad (Cycas revoluta) growing in England as a houseplant

Cycads can be cut into pieces to make new plants, or by direct planting of the seeds. Propagation by seeds is the preferred method of growth, and two unique risks to their germination exist. One is that the seeds have no dormancy, so the embryo is biologically required to maintain growth and development, which means if the seed dries out, it dies. The second is that the emerging radicle and embryo can be very susceptible to fungal diseases in its early stages, when in unhygienic or excessively wet conditions. Thus, many cycad growers pregerminate the seeds in moist, sterile media such as vermiculite or perlite. However pregermination is not necessary, and many report success by directly planting the seeds in regular potting soil. As with many plants, a combination of well-drained soil, sunlight, water and nutrients will help it to prosper. Although, because of their hardy nature, cycads do not necessarily require the most tender or careful treatment, they can grow in almost any medium, including soilless ones. One of the most common causes of cycad death is from rotting stems and roots due to over-watering.

Some insects, particularly scale insects, some weevils and chewing insects can damage cycads, though the pests are susceptible to insecticides such as the horticulture soluble oil white oil. Sometimes bacterial preparations may be used to control insect infestation on cycads. When some of the mature plants prepare for reproduction, though, the presence of weevils has been shown to help accomplish pollination.

While the cycads have a reputation of slow growth, it is not always well-founded, and some actually grow quite fast, achieving reproductive maturity in 23years (as with some Zamia species), while others in 15years (as with some Cycas, Australian Macrozamia and Lepidozamia).

  • 2

Small mass of nervous tissue containing numerous cell bodies with synapses for integration. CNS of many invertebrates contains many such ganglia, connected by nerve cords. In vertebrates the CNS has a different overall structure, but ganglia occur in the peripheral and autonomic nervous systems, where they may be encapsulated in connective tissue.

  • 2
What are you looking for?