Let f:[0,5] ->[0,5] be an invertible function defined by f(x) = ax^2 + bx + c, where abc is not equal to zero, then the roots of equation cx^2 + bx + a are:

Dear Student,
Please find below the solution to the asked query:

fx=ax2+bx+c For rootsax2+bx+c=0x=-b±b2-4ac2aNow replace x with 1xax2+bx+c=0cx2+bx+a=0Hence roots of cx2+bx+a=0 will be reciprocal of roots of ax2+bx+c=0Hence roots will be 2a-b±b2-4ac

Hope this information will clear your doubts about this topic.

If you have any doubts just ask here on the ask and answer forum and our experts will try to help you out as soon as possible.

  • 0
What are you looking for?