Let f:[0,infinity) ->R be a function given by f(x) = 9x^2 + 6x - 5, show that f is not invertible. Modify the codomain of f to make f invertible and then find the inverse of f.

dear student

let y=f(x)=9x2+6x-5=9x2+6x+1-6=(3x+1)2-6(3x+1)=y+6x=y+6-13for x to be defined y+60y-6but given co=domain=R hence function is not invertibleit will be invertible when function isf:[0,)->[-6,)y=f(x)=9x2+6x-5f-1(x)=x+6-13

regards

  • 24
What are you looking for?