Let R be a relation from Q into Q defined by R ={(a, b) :a, b€Q and a-b€Z}.
Show that
1.(a,a)€R for all a€Q
2(a,b)€R implies (b, a) €R
3(a,b) €R, (b, c) €R implies (a, c) €R

Dear student,

Please find below the solution to the asked query:

1. To show: For all aQ, a,aRLet aQ, that a is any rational number.Then we have   a-a=0Z  0 is an integerThen by definition of relation R, it implies that  a,aR2. To show:  a,bRb,aRLet a,bR, so that  a,bQThis gives,   a-bZNote that if xZ, then its negative -xZThis implies that,     - a-bZ    -a+bZ      b-aZThen by definition of relation R, it implies that  b,aR3. To show:  a,bR, b,cRa,cRLet a,bR, b,cR so that  a,b,cQThis gives,   a-bZ , b-cZSince Z is closed under addition.This implies that,      a-b+b-cZ    a-b+b-cZ      a-cZThen by definition of relation R, it implies that  a,cR

Hope this information will clear your doubts about the topic.

If you have any more doubts, just ask here on the forum and our experts will try to help you out as soon as 
possible.

Regards

  • 27
What are you looking for?