Marie is getting married tomorrow, at an outdoor ceremony in the desert. In recent years, it has rained only 5 days each year.

Unfortunately, the weatherman has predicted rain for tomorrow. When it actually rains, the weatherman correctly forecasts rain 9090 of the time. When it doesn't rain, he incorrectly forecasts rain 1010 of the time.

What is the probability that it will rain on the day of Marie's wedding?

The sample space is defined by two mutually-exclusive events - it rains or it does not rain. Additionally, a third event occurs when the weatherman predicts rain. Notation for these events appears below.

- Event A
_{1}. It rains on Marie's wedding. - Event A
_{2}. It does not rain on Marie's wedding. - Event B. The weatherman predicts rain.

- P( A
_{1}) = 5/365 =0.0136985 [It rains 5 days out of the year.] - P( A
_{2}) = 360/365 = 0.9863014 [It does not rain 360 days out of the year.] - P( B | A
_{1}) = 0.9 [When it rains, the weatherman predicts rain 90% of the time.] - P( B | A
_{2}) = 0.1 [When it does not rain, the weatherman predicts rain 10% of the time.]

We want to know P( A_{1} | B ), the probability it will rain on the day of Marie's wedding, given a forecast for rain by the weatherman. The answer can be determined from Bayes' theorem, as shown below.

P( A_{1} | B ) = |
P( A_{1} ) P( B | A_{1} )
P( A _{1} ) P( B | A_{1} ) + P( A_{2} ) P( B | A_{2} ) |

P( A_{1} | B ) = |
(0.014)(0.9) / [ (0.014)(0.9) + (0.986)(0.1) ] |

P( A_{1} | B ) = |
0.111 |

**
**