#
On the interval I = [–2, 2], the function $f\left(x\right)=\left\{\begin{array}{ll}\left(x+1\right){e}^{-\left(\frac{1}{\left|x\right|}+\frac{1}{x}\right)}& \left(x\ne 0\right)\\ 0& \left(x=0\right)\end{array}\right.$

(A) is continuous for all values of *x* ∈ I

(B) is continuous of *x *∈ I – (0)

(C) assumes all intermediate values from *f*(–2) & *f*(2)

(D) has maximum value equal to 3/*e*

This question has not been answered yet!

#### Don't worry! You can check out similar questions with solutions below

- ... g are
**continuous****functions**on ...**value**of f cos5 xdx is**equal**... - ... is ' f'
**continuous**Ã‰brA1'hal**value**k . is the**function**sin ... - ... a)is
**continuous**for all x ∈ I - 0 b)**assumes**all**intermediate**... - ... to find the
**value**of X for**continuity**of**function**while the ... - ... local
**maximum****value**of a**function****equal**to**maximum****value**of ...