# Please solve 8c(i): 8 (c) In the figure (3) given below, AD is perpendicular to BC, BD=15 cm, sin B= $\frac{4}{5}$ and tan C=1 (i) Calculate the lengths of AD, AB, DC and AC.

Dear Student,

Please find below the solution to the asked query:

8 ( c ) Given : Sin B  = $\frac{4}{5}$  , We know :  Sin   ,So

Sin B = $\frac{\mathrm{AD}}{\mathrm{AB}}$
We assume ratio coefficient of sides =  x , So  AD  = 4 x  and AB = 5 x

Now we apply Pythagoras theorem we get :

AB2 = AD2 + BD2 , Substitute given values we get :

(5x)2 = (4x)2 + BD2 ,

25x2 =  16x2 + BD2 ,

BD2 = 9x2,

BD = 3 x

But we know BD  = 15 cm ( Given ) , So

3 x = 15

= 5 , So

AD = 4x  = 4 ( 5 ) = 20  cm

And

AB = 5 x = 5 ( 5 ) = 25 cm

And

Given : tan C  = 1  , We know : tan   ,So

tan C = $\frac{\mathrm{AD}}{\mathrm{DC}}$ , So

1 = $\frac{20}{\mathrm{DC}}$ ,

DC =  20 cm

Now we apply Pythagoras theorem in triangle ACD we get :

AC2 = AD2 + DC2 , Substitute values we get :

AC2 = 202 + 202 ,

AC2 = 400 + 400 ,

AC2 = 800 ,

AC = 20

Therefore,

AD  = 20 cm , AB = 25 cm , DC = 20 cm and AC = 28.28 cm                                               ( Ans )

Hope this information will clear your doubts about topic.

If you have any more doubts just ask here on the forum and our experts will try to help you out as soon as possible.

Regards

• 0