# Please solve 8c(i,ii) Dear Student,

Please find below the solution to the asked query:

8 ( c ) Given : Sin B  = $\frac{4}{5}$  , We know :  Sin   ,So

Sin B = $\frac{\mathrm{AD}}{\mathrm{AB}}$
We assume ratio coefficient of sides =  x , So  AD  = 4 x  and AB = 5 x

Now we apply Pythagoras theorem we get :

AB2 = AD2 + BD2 , Substitute given values we get :

(5x)2 = (4x)2 + BD2 ,

25x2 =  16x2 + BD2 ,

BD2 = 9x2,

BD = 3 x

But we know BD  = 15 cm ( Given ) , So

3 x = 15

= 5 , So

AD = 4x  = 4 ( 5 ) = 20  cm

And

AB = 5 x = 5 ( 5 ) = 25 cm

And

Given : tan C  = 1  , We know : tan   ,So

tan C = $\frac{\mathrm{AD}}{\mathrm{DC}}$ , So

1 = $\frac{20}{\mathrm{DC}}$ ,

DC =  20 cm

Now we apply Pythagoras theorem in triangle ACD we get :

AC2 = AD2 + DC2 , Substitute values we get :

AC2 = 202 + 202 ,

AC2 = 400 + 400 ,

AC2 = 800 ,

AC = 20

Therefore,

AD  = 20 cm , AB = 25 cm , DC = 20 cm and AC = 28.28 cm                                               ( Ans )

ii ) tan B  =    And We know :  Cos   ,So Cos B =

To Show : , We take L.H.S. and substitute values , As :

Therefore,

L.H.S. = R.H.S.                                            ( Hence proved )

Hope this information will clear your doubts about topic.

If you have any more doubts just ask here on the forum and our experts will try to help you out as soon as possible.

Regards

• 2
What are you looking for?