prove any square matrix can be expressed as the sum of symmetric and skew symmetric matrix?

Let A be any square matrix.Then we can say,A = 12A+A' + 12A-A' = P + Q, where P = 12A+A'; Q = 12A-A'Now, P' = 12A+A''P' = 12A+A''P' = 12A' + A''P' = 12A'+AP'=12A+A' = PThus, P' = P and so P is symmetric.Now, Q' = 12A-A''Q' = 12A-A''Q' = 12A' - A''Q' = 12A'-AQ'=-12A-A' =-QThus, Q' = -Q and so Q is skew symmetric.So, A = P+Q, where P is symmetric and Q is skew symmetric.

  • 19
What are you looking for?