prove that aCosA+bCosB+cCosC = 2aSinBCosC

aCosA+bCosB+cCosC = 2aSinBCosC

aCosA+bCosB+cCosC 

=2R sinA cosA +2R SinB CosB + 2R Sin C CosC (From Sine rule)

=R(2 sinA cosA +2 SinB CosB + 2 Sin C CosC)

=R (Sin2A+Sin2B+Sin2C)

=R(2Sin (A+B)Cos(A-B)+2SinCCosC)

=R [ 2 SinC Cos(A-B) + 2SinC CosC]

=2RSinC[Cos(A-B)+CosC]

=2RSinC[Cos(A-B)-Cos(A+B)]

=2R SinC [ 2 SinA Sin B]

=(2R SinA) (2SinB SinC)

=a (2 SinB SinC)

=2a Sin B SinC

  • 52
What are you looking for?