prove that equal chords of a circle subtend equal angles at eh centre.

Given: - AB=CD.

  To prove: - AOB =COD

Proof :- In ∆ AOB and ∆COD ,

AB = CD (Given)

OB = OD (Radii of a circle are equal)

OC = OA (Radii of circle are equal)

By SSS congruent condition,

∆ AOB ∆ COD

∴ ∠ AOB =∠ COD ( ∵ Correspondence path of congruent triangles)

  • 48
Nmit is correct
  • 3
Ya right
  • 3
TRIANGLE AOB AND COD
AB=CD                                                             (given)
OA=OC                                                             ( each equal to r)
​OB=OD                                                              (each equal to r )
triangle AOB CONGRUENT COD                   (SSS ) 
ANGLE AOB =ANGLE COD                            (CPCT ) 
  • 6
figure in RD SHARMA 16.12 page number and in NCERT circles lesson . 
  • 4
It is correct
  • 5
  • 0
What are you looking for?