# Q). If the roots of the equation $\frac{1}{x+p}+\frac{1}{x+q}=\frac{1}{r},\left(x\ne -p,x\ne -q,r\ne 0\right)$ are equal in magnitude but opposite in sign, then $p+q$ is equal to

This question has not been answered yet!

#### Don't worry! You can check out similar questions with solutions below

- ... the
**roots**of ax2+bx+c=0,are**equal**in**magnitude**,but**opposite**... - ... bx+c to have zeroes
**equal**in**magnitude**but**opposite**in**sign**? - ... of the zeroes are
**equal**in**magnitude**but**opposite**in**sign**. - ... -5x+k can never be
**equal**in**magnitude**and**opposite**in**sign** - ... 75if the zeroes are
**equal**in**magnitude**but**opposite**in**sign**