Question 11 pls

Question 11 pls Two circles xa 6 and points of i (A)x2 + — 6X +4 and the point (1, is 12. If line y + x = 2 do not intersect (D) None a is parameter, then maximum value Of + any met-nber of (irees — ax O at (C) 8-vfä (B) 2C2 Tangents are circle x2 = 10 X2 + Y2 + 4X — 3y + 2 O . The point of intersecüon of these tangents is 5 -10 (A) -10 5 If the line C x + my = 1 touches the circle x2+Y2=a2. a2(x2+ s 10

Dear Student ,
Please find below the solution to the asked query :

Equation of circle through point of intersections of circles S1=0 and S2=0 isS1+λ S2-S1=0So , equation of circle passing through intersection of given circles isx2+y2-6+λ x2+y2-6x-8-x2+y2-6=0x2+y2-6+λ -6x-2=0As it passes through 1,112+12-6+λ-6-2=0-4-8λ=0-8λ=4λ=-12So , Equation of required circle isx2+y2-6-12 -6x-2=02 x2+y2-6--6x-2=02x2+2y2-12+6x+2=02x2+2y2+6x-10=0x2+y2+3x-5=0    ANS...
Hope this information will clear your doubts about the topic .
If you have any more doubts just ask here on the forum and our experts will try to help you out as soon as possible .


  • 12
What are you looking for?