# show that square of any positive integer cannot be of the form 5q+2 or 5q+3 for any integer q

Let  a  be any positive integer.

By Euclid's division lemma,

a = bm + r  where  b = 5

a = 5m + r

So,  r can be any of 0, 1, 2, 3, 4

∴  a = 5m  when  r = 0

a = 5m + 1  when  r = 1

a = 5m + 2  when  r = 2

a = 5m + 3  when  r = 3

a = 5m + 4  when  r = 4

So,  "a"  is any positive integer in the form of 5m,  5m + 1 ,  5m + 2 , 5m + 3 ,  5m + 4 for some integer m.

Case I :  a = 5m

⇒  a2 = (5m)2 = 25m2

⇒  a2 = 5(5m2)

= 5q , where  q = 5m2

Case II : a = 5m + 1

⇒  a2 = (5m + 1)2 = 25m2 + 10 m + 1

⇒  a2 = 5 (5m2 + 2m) + 1

= 5q + 1,  where q = 5m2 + 2m

Case III :  a = 5m + 2

⇒   a2 = (5m + 2)2

=  25m2 + 20m +4

=  25m2 + 20m +4

=  5 (5m2 + 4m) + 4

=  5q + 4  where q = 5m2 + 4m

Case IV:  a = 5m + 3

⇒  a2 = (5m + 3)2 = 25m2 + 30m + 9

= 25m2 + 30m + 5 + 4

= 5 (5m2 + 6m + 1) + 4

= 5q + 4  where  q = 5m2 + 6m + 1

Case V:    a = 5m + 4

⇒  a2 = (5m + 4)2 = 25m2 + 40m + 16

= 25m2 + 40m + 15 + 1

= 5 (5m2 + 8m + 3) + 1

= 5q + 1  where  q = 5m2 + 8m + 3

From all these cases,  it is clear that square of any positive integer can not be of the form

5m + 2  or  5m + 3

• 197

Let a be any positive integer and b =5 ,then by E.D.L a = 5q + r where q > 0 or r =1,2,3 or 4 .

a = 5q

a =5q + 1 , or

a = 5q +2 , or

a = 5q + 3 , or

a = 5q +4 , or

Now using theo. no. 3

if the square of any positive integer (a^) divided by 2, then a also divided by 2

But a^ is not aqual to 5q + 3 or 5q + 2

Hence, the square of any positive integer cannot of the form 5q +2 or 5q +3

I Hope u Found ur answer

• 9
What are you looking for?