Solve this :

Q .   Find   the   value   of   expression   2   tan   x + 1 cos 2 x ,   7 π 2 < x < 15 π 4 ( a )   - 1 + tan   x ( b )   ( 1 - tan   x ) ( c )   ( 1 + tan   x ) ( d )   ( tan   x - 1 )

2 tan x+1cos2x=2sin xcos x+1cos2x=2sin x cos x+1cos2x=2sin x cos x+sin2x+cos2xcos2x=sin x+cos x2cos2x=sin x+cos xcos x7π2<x<15π40<x-7π2<15π4-7π20<x-7π2<15π-14π40<x-7π2<π4Let y=x-7π2x=y+7π20<y<π4sin x+cos xcos x=sin y+7π2+cos y+7π2cos y+7π2=sin 2π+y+3π2+cos 2π+y+3π2cos 2π+y+3π2=sin 3π2+y+cos 3π2+ycos 3π2+y=-cos y+sin ysin y=sin y-cos ysin y 0<y<π4In interval 0,  π4, sin x>cos x see the graph. Also sin x>0=sin y-cos ysin y=1-cot y=1-cot x-7π2=1+cot 7π2-x=1+cot 2π+3π2-x=1+cot 2π+3π2-x=1+cot 3π2-x=1+tan x

  • 0
What are you looking for?