Solve this question:
Q.21. Find the value of θ   i n   0 ,   2 π such that the matrix  2 sin θ - 1 sin θ cos θ sin θ + π 2 cos θ - 3 tan θ cos θ - π tan π - θ 0 is a skew symmetric matrix.

Dear Student,

As the given matrix is a skew symmetric matrix , then , a skew symmetric matrix is a square matrix whose transpose equals its negative; that is, it satisfies the condition      AT = A. or aji=-aijSo, a21=-a12 , a31=-a13  and a32=-a23Now, a21=-a12sinθ+π=-sin θsinθ cosπ+sinπ cosθ=-sinθ            sina+b=sina cosb+cosa sinbsinθ-1+0. cosθ=-sinθ                   sinπ=0 , cosπ=-1-sinθ+0=-sinθ-sinθ=-sinθ value of θ is 0 Now we can do similar with  a31=-a13cosθ-π=-cosθcosθcosπ+sinθsinπ=-cosθ            cosa-b=cosa cosb+sina sinbcosθ-1+sinθ.0=-cosθ              -cosθ+0=-cosθ-cosθ=-cosθvalue of θ is 0simillarlya32=-a23tanπ-θ=-tanθtanπ-tanθ1+tanπtanθ=-tanθ                          tana-b=tana-tanb1+tana tanb , tanπ=00-tanθ1+0.tanθ=-tanθ-tanθ=-tanθHence value of θ is 0

Hope this information will clear your doubts about topic.

If you have any more doubts just ask here on the forum and our experts will try to help you out as soon as possible.

Regards
 

  • -1
What are you looking for?