# VERIFY EXPERIMENTALLY CRITERIA FOR CONGRUENCY OF TRIANGLES USING DIFFERENT TRIANGULAR CUT-OUT SHAPES.

To verify experimentally criteria for congruency of triangle , we follow these steps  :

Step 1  :  Take a cardboard , any size ( as per your convenience ) , And paste white blank paper on that .

Step 2 :  Now Cut out from any color paper triangles ABC and DEF  , such that :  AB  =  DE  , BC  = EF  and AC  =  DF So , $∆$ ABC  $\cong$  $∆$ DEF  ( by SSS rule )

Step 3 :  Now Cut out from any color paper triangles GHI and JKL  , such that :  $\angle$ H  =  $\angle$ K  , HI  = KL  and $\angle$ I  =  $\angle$ L . So , $∆$ GHI  $\cong$  $∆$ JKL   ( by ASA rule )

Step 4 :  Now Cut out from any color paper triangles MNO and PQR  , such that : MN  =  PQ  , $\angle$ N  = $\angle$ Q  and  NO  =  QR . So , $∆$ MNO  $\cong$  $∆$ PQR   ( by SAS rule )

Step 5 :  Now Cut out from any color paper triangles STU and XYZ  , such that : $\angle$ T  =  $\angle$ Y = 90$°$  , Hypotenuse SU = XZ  and  TU  =  YZ . So , $∆$ STU  $\cong$  $∆$ XYZ   ( by RHS rule )

Step 6 :  Now Cut out from any color paper triangles SRV and HLM  , such that :  $\angle$ S  =  $\angle$ H ,  $\angle$ R  =  $\angle$ L and RV  = LM . So , $∆$ SRV  $\cong$  $∆$ HLM   ( by AAS rule )

That's how we verified experimentally the different criteria for congruency of triangles using triangle cut out  .

• 8
What are you looking for?