what is the relation between mole fraction and molality?

please can anyone explain it in a simple way....

$Molality\left(m\right)=\frac{Numberofmolesofsolute}{MassofsolventinKg}$

Mole fraction of a component in a solution is the ratio of the number of moles of that component to the total number of moles of all the components,

For a binary solution of A & B,

$MolefractionofA\left({X}_{A}\right)=\frac{{n}_{A}}{{n}_{A}+{n}_{B}}\phantom{\rule{0ex}{0ex}}MolefractionofB\hspace{0.17em}\left({X}_{B}\right)=\frac{{n}_{B}}{{n}_{A}+{n}_{B}}\phantom{\rule{0ex}{0ex}}Moreover,\phantom{\rule{0ex}{0ex}}Totalmolefractionofallthecomponentsofasolutionis\mathbf{1}\phantom{\rule{0ex}{0ex}}i.e,{X}_{A}+{X}_{B}=1\phantom{\rule{0ex}{0ex}}\phantom{\rule{0ex}{0ex}}\frac{{X}_{A}}{{X}_{B}}=\frac{{n}_{A}}{{n}_{B}}=\frac{Molesofsolute}{Molesofsolvent}\phantom{\rule{0ex}{0ex}}=\frac{{w}_{A}\times {m}_{B}}{{w}_{B}\times {m}_{A}}\phantom{\rule{0ex}{0ex}}\frac{{\mathbf{X}}_{\mathbf{A}}\mathbf{\times}\mathbf{1000}}{{\mathbf{X}}_{\mathbf{B}}\mathbf{\times}{\mathbf{m}}_{\mathbf{B}}}\mathbf{=}\frac{{\mathbf{w}}_{\mathbf{A}}\mathbf{\times}\mathbf{1000}}{{\mathbf{w}}_{\mathbf{B}}\mathbf{\times}{\mathbf{m}}_{\mathbf{A}}}\mathbf{=}\mathit{m}\phantom{\rule{0ex}{0ex}}OR\phantom{\rule{0ex}{0ex}}\frac{{\mathbf{X}}_{\mathbf{A}}\mathbf{\times}\mathbf{1000}}{\mathbf{1}\mathbf{}\mathbf{-}\mathbf{}{\mathbf{X}}_{\mathbf{A}}}\mathbf{=}\mathit{m}\phantom{\rule{0ex}{0ex}}$

**
**