Why is silicon used for making solar cells?

Silicon is a semiconductor (neither a conductor nor an insulator). Solar Cell is an electronic device which is designed to emit  electricity when light falls on it. It requires a semiconductor wafer to carry out this phenomenon. The electronic configuration of Silicon (element) is such that upon proper fabrication it works just according to the requirement. It is thus used to make solar cells. You will study about this in details in your 12th standard.

  • 2

Silicon has some special chemical properties , especially in its crystalline form. An atom of sili­con has 14 electrons, arranged in three different shells. The first two shells -- which hold two and eight electrons respectively -- are completely full. The outer shell, however, is only half full with just four electrons. A silicon atom will always look for ways to fill up its last shell, and to do this, it will share electrons with four nearby atoms. It's like each atom holds hands with its neighbors, except that in this case, each atom has four hands joined to four neighbors. That's what forms thecrystalline structure, and that structure turns out to be important to this type of PV cell.

The only problem is that pure crystalline silicon is a poor conductor of electricity because none of its electrons are free to move about, unlike the electrons in more optimum conductors like copper. To address this issue, the silicon in a solar cell hasimpurities-- other atoms purposefully mixed in with the silicon atoms -- which changes the way things work a bit. We usually think of impurities as something undesirable, but in this case, our cell wouldn't work without them. Consider silicon with an atom of phosphorous here and there, maybe one for every million silicon atoms. Phosphorous has five electrons in its outer shell, not four. It still bonds with its silicon neighbor atoms, but in a sense, the phosphorous has one electron that doesn't have anyone to hold hands with. It doesn't form part of a bond, but there is a positive proton in the phosphorous nucleus holding it in place.

Whenenergyis added to pure silicon, in the form of heat for example, it can cause a few electrons to break free of their bonds and leave their atoms. A hole is left behind in each case. These electrons, calledfree carriers, then wander randomly around the crystalline lattice looking for another hole to fall into and carrying an electrical current. However, there are so few of them in pure silicon, that they aren't very useful.

But our impure silicon with phosphorous atoms mixed in is a different story. It takes a lot less energy to knock loose one of our "extra" phosphorous electrons because they aren't tied up in a bond with any neighboring atoms. As a result, most of these electrons do break free, and we have a lot more free carriers than we would have in pure silicon. The process of adding impurities on purpose is calleddoping, and when doped with phosphorous, the resulting silicon is calledN-type("n" for negative) because of the prevalence of free electrons. N-type doped silicon is a much better conductor than pure silicon.

The other part of a typical solar cell is doped with the element boron, which has only three electrons in its outer shell instead of four, to become P-type silicon. Instead of having free electrons,P-type("p" for positive) has free openings and carries the opposite (positive) charge.

  • -1
What are you looking for?