Write  short  notes  about  magnet  and  electromagnet.

Hi Sharayu!


Please refer to the answer given by Sumaid.


Good work @ Sumaid!! Keep posting!! 




  • -5
This article is about objects and devices that produce magnetic fields. For a description of magnetic materials, see magnetism. For other uses, see Magnet (disambiguation).
Iron filings that have oriented in the magnetic field produced by a bar magnet
Magnetic field lines of a solenoid which are similar to a bar magnet as illustrated above with the iron filings

A magnet (from Greek μαγνήτις λίθος magnḗtis líthos, Magnesian stone) is a material or object that produces a magnetic field. This magnetic field is invisible but is responsible for the most notable property of a magnet: a force that pulls on other ferromagnetic materials like iron and attracts or repels other magnets.

A permanent magnet is an object made from a material that is magnetized and creates its own persistent magnetic field. An everyday example is a refrigerator magnet used to hold notes on a refrigerator door. Materials that can be magnetized, which are also the ones that are strongly attracted to a magnet, are called ferromagnetic (or ferrimagnetic). These include iron, nickel, cobalt, some alloys of rare earth metals, and some naturally occurring minerals such as lodestone. Although ferromagnetic (and ferrimagnetic) materials are the only ones attracted to a magnet strongly enough to be commonly considered magnetic, all other substances respond weakly to a magnetic field, by one of several other types of magnetism.

Ferromagnetic materials can be divided into magnetically "soft" materials like annealed iron which can be magnetized but don't tend to stay magnetized, and magnetically "hard" materials, which do. Permanent magnets are made from "hard" ferromagnetic materials which are subjected to special processing in a powerful magnetic field during manufacture, to align their internal microcrystalline structure, making them very hard to demagnetize. To demagnetize a saturated magnet, a certain magnetic field must be applied and this threshold depends on coercivity of the respective material. "Hard" materials have high coercivity whereas "soft" materials have low coercivity.

An electromagnet is made from a coil of wire which acts as a magnet when an electric current passes through it, but stops being a magnet when the current stops. Often an electromagnet is wrapped around a core of ferromagnetic material like steel, which enhances the magnetic field produced by the coil.

The overall strength of a magnet is measured by its magnetic moment, or alternately the total magnetic flux it produces. The local strength of the magnetism in a material is measured by its magnetization.

  • 2

The earliest known surviving descriptions of magnets and their properties are from Greece, India, and China, around 2500 years ago.[1][2][3] The properties of lodestones and their affinity for iron were written of by Pliny the Elder in his encyclopedia Naturalis Historia.[4]

By the 12th to 13th centuries AD, magnetic compasses were used in navigation in China, Europe, and elsewhere.[5] For more details, see the main Magnetism article.

  • 1


An electromagnet is a type of magnet whose magnetic field is produced by the flow of electric current. The magnetic field disappears when the current ceases. Electromagnets are very widely used as components of other electrical devices, such as motors, generators, relays, loudspeakers, hard disks, MRI machines, scientific instruments, and magnetic separation equipment, as well as being employed as industrial lifting electromagnets for picking up and moving heavy iron objects like scrap iron.

Electromagnets attract paper clips when current is applied creating a magnetic field. The electromagnet loses them when current and magnetic field are removed.
A simple electromagnet consisting of a coil of insulated wire wrapped around an iron core. The strength of magnetic field generated is proportional to the amount of current.
Current (I) through a wire produces a magnetic field (B). The field is oriented according to the right-hand rule.

An electric current flowing in a wire creates a magnetic field around the wire (see drawing below). To concentrate the magnetic field of a wire, in an electromagnet the wire is wound into a coil, with many turns of wire lying side by side. The magnetic field of all the turns of wire passes through the center of the coil, creating a strong magnetic field there. A coil forming the shape of a straight tube (a helix) is called a solenoid; a solenoid that is bent into a donut shape so that the ends meet is called a toroid. Much stronger magnetic fields can be produced if a "core" of ferromagnetic material, such as soft iron, is placed inside the coil. The ferromagnetic core magnifies the magnetic field to thousands of times the strength of the field of the coil alone, due to the high magnetic permeability μ of the ferromagnetic material. This is called a ferromagnetic-core or iron-core electromagnet.

The direction of the magnetic field through a coil of wire can be found from a form of the right-hand rule.[1][2][3][4][5][6] If the fingers of the right hand are curled around the coil in the direction of current flow (conventional current, flow of positive charge) through the windings, the thumb points in the direction of the field inside the coil. The side of the magnet that the field lines emerge from is defined to be the north pole.

The main advantage of an electromagnet over a permanent magnet is that the magnetic field can be rapidly manipulated over a wide range by controlling the amount of electric current. However, a continuous supply of electrical energy is required to maintain the field.

  • 1

AND please tell me about you

  • 0
What are you looking for?