WRITE  THE  BIOGRAPHY  OF  ALBERT  EINSTEIN?BRIEFLY

Albert Einstein as a patent clerk in 1905Photo: Albert Einstein

Albert Einstein was born in Germany in 1879. He enjoyed classical music and played the violin. One story Einstein liked to tell about his childhood was of a wonder he saw when he was four or five years old: a magnetic compass. The needle's invariable northward swing, guided by an invisible force, profoundly impressed the child. The compass convinced him that there had to be "something behind things, something deeply hidden."

Even as a small boy Albert Einstein was self-sufficient and thoughtful. According to family legend he was a slow talker, pausing to consider what he would say. His sister remembered the concentration and perseverance with which he would build houses of cards.

Albert Einstein's first job was that of patent clerk.

In 1933, he joined the staff of the newly created Institute for Advanced Study in Princeton, New Jersey. He accepted this position for life, living there until his death. Einstein is probably familiar to most people for his mathematical equation about the nature of energy, E = MC2.

Albert Einstein wrote a paper with a new understanding of the structure of light. He argued that light can act as though it consists of discrete, independent particles of energy, in some ways like the particles of a gas. A few years before, Max Planck's work had contained the first suggestion of a discreteness in energy, but Einstein went far beyond this. His revolutionary proposal seemed to contradict the universally accepted theory that light consists of smoothly oscillating electromagnetic waves. But Einstein showed that light quanta, as he called the particles of energy, could help to explain phenomena being studied by experimental physicists. For example, he made clear how light ejects electrons from metals.

There was a well-known kinetic energy theory that explained heat as an effect of the ceaseless motion of atoms; Einstein proposed a way to put the theory to a new and crucial experimental test. If tiny but visible particles were suspended in a liquid, he said, the irregular bombardment by the liquid's invisible atoms should cause the suspended particles to carry out a random jittering dance. One should be able to observe this through a microscope, and if the predicted motion were not seen, the whole kinetic theory would be in grave danger. But just such a random dance of microscopic particles had long since been observed. Now the motion was explained in detail. Albert Einstein had reinforced the kinetic theory, and he had created a powerful new tool for studying the movement of atoms.

The Atomic Bomb
Please don't build one at home. On August 2nd 1939, just before the beginning of World War II, Einstein wrote to then President Franklin D. Roosevelt. Einstein and several other scientists told Roosevelt of efforts in Nazi Germany to purify U-235 with which might in turn be used to build an atomic bomb. It was shortly thereafter that the United States Government began the serious undertaking known only then as the Manhattan Project. Simply put, the Manhattan Project was committed to expedient research and production that would produce a viable atomic bomb. [The Letter]
Biography
Nova's multimedia presentation on the life of Albert Einstein
The Biography of Albert Einstein
Learn about the life and times of Albert Einstein. Chapters: Formative Years, The Great Works, E=mc², World Fame, Public Concerns, Quantum and Cosmos, The Nuclear Age, Science and Philosophy, An Essay: Albert Einstein - The World As I See It.
Albert Einstein in Princeton
"Albert Einstein (1879 - 1955) first gained worldwide prominence in 1919, when British astronomers verified predictions of Einstein's general theory of relativity through measurements taken during a total eclipse. Einstein's theories expanded upon, and in some cases refuted, universal laws formulated by Newton in the late seventeenth century."

 

  • 1

Albert Einstein was asked to pose so many times that he said if he hadn't been a physicist, he could have made a living as a model.

Related Information
Nuclear Innovations
Inventor and innovations surrounding nuclear physics.

E = MC2
Albert Einstein developed a theory about the relationship of mass and energy. The formula, E=mc[2], is probably the most famous outcome from Einstein's special theory of relativity. The formula says energy (E) equals mass (m) times the speed of light (c) squared. In essence, it means mass is just one form of energy. Since the speed of light squared is an enormous number (186,000 miles per second)[2], a small amount of mass can be converted to a phenomenal amount of energy. Or, if there's a lot of energy available, some energy can be converted to mass and a new particle can be created. Nuclear reactors, for instance, work because nuclear reactions convert small amounts of mass into large amounts of energy.

  • 0

visit google

  • 0

Albert Einstein was born in Germany in 1879. He enjoyed classical music and played the violin. One story Einstein liked to tell about his childhood was of a wonder he saw when he was four or five years old: a magnetic compass. The needle's invariable northward swing, guided by an invisible force, profoundly impressed the child. The compass convinced him that there had to be "something behind things, something deeply hidden."

Even as a small boy Albert Einstein was self-sufficient and thoughtful. According to family legend he was a slow talker, pausing to consider what he would say. His sister remembered the concentration and perseverance with which he would build houses of cards.

Albert Einstein's first job was that of patent clerk.

In 1933, he joined the staff of the newly created Institute for Advanced Study in Princeton, New Jersey. He accepted this position for life, living there until his death. Einstein is probably familiar to most people for his mathematical equation about the nature of energy, E = MC2.

Albert Einstein wrote a paper with a new understanding of the structure of light. He argued that light can act as though it consists of discrete, independent particles of energy, in some ways like the particles of a gas. A few years before, Max Planck's work had contained the first suggestion of a discreteness in energy, but Einstein went far beyond this. His revolutionary proposal seemed to contradict the universally accepted theory that light consists of smoothly oscillating electromagnetic waves. But Einstein showed that light quanta, as he called the particles of energy, could help to explain phenomena being studied by experimental physicists. For example, he made clear how light ejects electrons from metals.

There was a well-known kinetic energy theory that explained heat as an effect of the ceaseless motion of atoms; Einstein proposed a way to put the theory to a new and crucial experimental test. If tiny but visible particles were suspended in a liquid, he said, the irregular bombardment by the liquid's invisible atoms should cause the suspended particles to carry out a random jittering dance. One should be able to observe this through a microscope, and if the predicted motion were not seen, the whole kinetic theory would be in grave danger. But just such a random dance of microscopic particles had long since been observed. Now the motion was explained in detail. Albert Einstein had reinforced the kinetic theory, and he had created a powerful new tool for studying the movement of atoms.

The Atomic Bomb
Please don't build one at home. On August 2nd 1939, just before the beginning of World War II, Einstein wrote to then President Franklin D. Roosevelt. Einstein and several other scientists told Roosevelt of efforts in Nazi Germany to purify U-235 with which might in turn be used to build an atomic bomb. It was shortly thereafter that the United States Government began the serious undertaking known only then as the Manhattan Project. Simply put, the Manhattan Project was committed to expedient research and production that would produce a viable atomic bomb. [The Letter]
Biography
Nova's multimedia presentation on the life of Albert Einstein
The Biography of Albert Einstein
Learn about the life and times of Albert Einstein. Chapters: Formative Years, The Great Works, E=mc², World Fame, Public Concerns, Quantum and Cosmos, The Nuclear Age, Science and Philosophy, An Essay: Albert Einstein - The World As I See It.
Albert Einstein in Princeton
"Albert Einstein (1879 - 1955) first gained worldwide prominence in 1919, when British astronomers verified predictions of Einstein's general theory of relativity through measurements taken during a total eclipse. Einstein's theories expanded upon, and in some cases refuted, universal laws formulated by Newton in the late seventeenth century."

Albert Einstein was asked to pose so many times that he said if he hadn't been a physicist, he could have made a living as a model.E = MC2
Albert Einstein developed a theory about the relationship of mass and energy. The formula, E=mc[2], is probably the most famous outcome from Einstein's special theory of relativity. The formula says energy (E) equals mass (m) times the speed of light (c) squared. In essence, it means mass is just one form of energy. Since the speed of light squared is an enormous number (186,000 miles per second)[2], a small amount of mass can be converted to a phenomenal amount of energy. Or, if there's a lot of energy available, some energy can be converted to mass and a new particle can be created. Nuclear reactors, for instance, work because nuclear reactions convert small amounts of mass into large amounts of energy........ hp it helps.......

  • 2
Albert Einstein was born on 14 March 1879. He loved machanical toys.At age of two and a half he uttered everything twice so his friends called him brother boring. His mother told him a freak. He introduced general theory of relativity.He married to meliva Marlie and after many conflicts finally got divorced. He married his cousin Elsa the same year. He died in age of 76
  • 1
He was a scintist
  • 1
He was a geat scientist he also found the formula e=mc2
  • 2
His name was Albert Einstin......
  • 0
go to google
  • 0
Einstein is a visionary because he could look into the future and think about it in a creative and intelligent manner. Einstein did not believe in nationalism. He always felt confined and inhibited by the idea of belonging to one nation. He was a citizen of the world. He served humanity. His discoveries have improved the condition of human life in general. He did not serve the interests of a single nation.
  • 1
Love
  • -1

Albert Einstein was born at Ulm, in Württemberg, Germany, on March 14, 1879. Six weeks later the family moved to Munich, where he later on began his schooling at the Luitpold Gymnasium. Later, they moved to Italy and Albert continued his education at Aarau, Switzerland and in 1896 he entered the Swiss Federal Polytechnic School in Zurich to be trained as a teacher in physics and mathematics. In 1901, the year he gained his diploma, he acquired Swiss citizenship and, as he was unable to find a teaching post, he accepted a position as technical assistant in the Swiss Patent Office. In 1905 he obtained his doctor’s degree.

During his stay at the Patent Office, and in his spare time, he produced much of his remarkable work and in 1908 he was appointed Privatdozent in Berne. In 1909 he became Professor Extraordinary at Zurich, in 1911 Professor of Theoretical Physics at Prague, returning to Zurich in the following year to fill a similar post. In 1914 he was appointed Director of the Kaiser Wilhelm Physical Institute and Professor in the University of Berlin. He became a German citizen in 1914 and remained in Berlin until 1933 when he renounced his citizenship for political reasons and emigrated to America to take the position of Professor of Theoretical Physics at Princeton*. He became a United States citizen in 1940 and retired from his post in 1945.

After World War II, Einstein was a leading figure in the World Government Movement, he was offered the Presidency of the State of Israel, which he declined, and he collaborated with Dr. Chaim Weizmann in establishing the Hebrew University of Jerusalem.

Einstein always appeared to have a clear view of the problems of physics and the determination to solve them. He had a strategy of his own and was able to visualize the main stages on the way to his goal. He regarded his major achievements as mere stepping-stones for the next advance.

At the start of his scientific work, Einstein realized the inadequacies of Newtonian mechanics and his special theory of relativity stemmed from an attempt to reconcile the laws of mechanics with the laws of the electromagnetic field. He dealt with classical problems of statistical mechanics and problems in which they were merged with quantum theory: this led to an explanation of the Brownian movement of molecules. He investigated the thermal properties of light with a low radiation density and his observations laid the foundation of the photon theory of light.

In his early days in Berlin, Einstein postulated that the correct interpretation of the special theory of relativity must also furnish a theory of gravitation and in 1916 he published his paper on the general theory of relativity. During this time he also contributed to the problems of the theory of radiation and statistical mechanics.

In the 1920s, Einstein embarked on the construction of unified field theories, although he continued to work on the probabilistic interpretation of quantum theory, and he persevered with this work in America. He contributed to statistical mechanics by his development of the quantum theory of a monatomic gas and he has also accomplished valuable work in connection with atomic transition probabilities and relativistic cosmology.

After his retirement he continued to work towards the unification of the basic concepts of physics, taking the opposite approach, geometrisation, to the majority of physicists.

Einstein’s researches are, of course, well chronicled and his more important works include Special Theory of Relativity (1905), Relativity (English translations, 1920 and 1950), General Theory of Relativity (1916), Investigations on Theory of Brownian Movement (1926), and The Evolution of Physics (1938). Among his non-scientific works, About Zionism (1930), Why War? (1933), My Philosophy (1934), and Out of My Later Years (1950) are perhaps the most important.

Albert Einstein received honorary doctorate degrees in science, medicine and philosophy from many European and American universities. During the 1920’s he lectured in Europe, America and the Far East, and he was awarded Fellowships or Memberships of all the leading scientific academies throughout the world. He gained numerous awards in recognition of his work, including the Copley Medal of the Royal Society of London in 1925, and the Franklin Medal of the Franklin Institute in 1935.

Einstein’s gifts inevitably resulted in his dwelling much in intellectual solitude and, for relaxation, music played an important part in his life. He married Mileva Maric in 1903 and they had a daughter and two sons; their marriage was dissolved in 1919 and in the same year he married his cousin, Elsa Löwenthal, who died in 1936. He died on April 18, 1955 at Princeton, New Jersey.

  • 1
Albert Einstein was born in Germany in 1879. He enjoyed classical music and played the violin. One story Einstein liked to tell about his childhood was of a wonder he saw when he was four or five years old: a magnetic compass. The needle's invariable northward swing, guided by an invisible force, profoundly impressed the child. The compass convinced him that there had to be "something behind things, something deeply hidden."

Even as a small boy Albert Einstein was self-sufficient and thoughtful. According to family legend he was a slow talker, pausing to consider what he would say. His sister remembered the concentration and perseverance with which he would build houses of cards.

Albert Einstein's first job was that of patent clerk.

In 1933, he joined the staff of the newly created Institute for Advanced Study in Princeton, New Jersey. He accepted this position for life, living there until his death. Einstein is probably familiar to most people for his mathematical equation about the nature of energy,?E = MC2.

Albert Einstein wrote a paper with a new understanding of the structure of light. He argued that light can act as though it consists of discrete, independent particles of energy, in some ways like the particles of a gas. A few years before, Max Planck's work had contained the first suggestion of a discreteness in energy, but Einstein went far beyond this. His revolutionary proposal seemed to contradict the universally accepted theory that light consists of smoothly oscillating electromagnetic waves. But Einstein showed that light quanta, as he called the particles of energy, could help to explain phenomena being studied by experimental physicists. For example, he made clear how light ejects electrons from metals.

There was a well-known kinetic energy theory that explained heat as an effect of the ceaseless motion of atoms; Einstein proposed a way to put the theory to a new and crucial experimental test. If tiny but visible particles were suspended in a liquid, he said, the irregular bombardment by the liquid's invisible atoms should cause the suspended particles to carry out a random jittering dance. One should be able to observe this through a microscope, and if the predicted motion were not seen, the whole kinetic theory would be in grave danger. But just such a random dance of microscopic particles had long since been observed. Now the motion was explained in detail. Albert Einstein had reinforced the kinetic theory, and he had created a powerful new tool for studying the movement of atoms.

The Atomic Bomb
Please don't build one at home.?On August 2nd 1939, just before the beginning of World War II, Einstein?wrote?to then President Franklin D. Roosevelt. Einstein and several other scientists told Roosevelt of efforts in Nazi Germany to purify U-235 with which might in turn be used to build an atomic bomb. It was shortly thereafter that the United States Government began the serious undertaking known only then as the Manhattan Project. Simply put, the Manhattan Project was committed to expedient research and production that would produce a viable atomic bomb. [The Letter]
Biography
Nova's multimedia presentation on the life of Albert Einstein
The Biography of Albert Einstein
Learn about the life and times of Albert Einstein. Chapters: Formative Years, The Great Works, E=mc?, World Fame, Public Concerns, Quantum and Cosmos, The Nuclear Age, Science and Philosophy, An Essay: Albert Einstein - The World As I See It.
Albert Einstein in Princeton
"Albert Einstein (1879 - 1955) first gained worldwide prominence in 1919, when British astronomers verified predictions of Einstein's general theory of relativity through measurements taken during a total eclipse. Einstein's theories expanded upon, and in some cases refuted, universal laws formulated by Newton in the late seventeenth century."

Albert Einstein was asked to pose so many times that he said if he hadn't been a physicist, he could have made a living as a model.E = MC2
Albert Einstein developed a theory about the relationship of mass and energy. The formula, E=mc[2], is probably the most famous outcome from Einstein's special theory of relativity. The formula says energy (E) equals mass (m) times the speed of light (c) squared. In essence, it means mass is just one form of energy. Since the speed of light squared is an enormous number (186,000 miles per second)[2], a small amount of mass can be converted to a phenomenal amount of energy. Or, if there's a lot of energy available, some energy can be converted to mass and a new particle can be created. Nuclear reactors, for instance, work because nuclear reactions convert small amounts of mass into large amounts of energy........ hp it helps.......
  • 0
What are you looking for?