Call me

Have a Query? We will call you right away.

+91

E.g: 9876543210, 01112345678

We will give you a call shortly, Thank You

Office hours: 9:00 am to 9:00 pm IST (7 days a week)

What are you looking for?

Syllabus

A triangle ABC is drawn to circumscribe a circle of radius 4 cm such that the segments BD and DC into which BC is divided by the point of contact D are of lengths 8 cm and 6 cm respectively (see given figure). Find the sides AB and AC.

explain this some in a little easy maNNER.PLS EXPERTSS

Triangle ABC circumscribes the circle with centre O. If AB + CQ = 8CM, find the perimeter of triangle ABC.

prove that the tangent at any point of a circle is perpendicular to the radius through the point of contact.

ABC is a right triangle right angled at B, such that BC = 6 cm and AB = 8 CM, find the radius of its in circle.

PQ is a chord of length 8cm of a circle of radius 5cm. The tangent at P and Q intersect at a point T. Find the length TP?

CAN I GET THE CORRECT EXPLATION OF THIS EXAMPLE????

plz

If the angle between two radii of a circle is 140 DEGREE, then the angle between the tangets at the ends of the radii is ?

prove that the tangent drawn at the mid point of an arc of a circle is parallel to the chord joining the end points of the arc

what is the name of the region between an arc and chord of a cicle?

A circle touches the side Bc of a triangle ABC at a point P and touches AB and AC when produced at Q and R respectively. Show that

prove that the length of the tangents drawn from an external point to a circle are equal, hence show that the centre lies on the bisector of the angle between the two tangents?

ab is a chord of length 16cm of a circle of radius 10 cm .the tangents at a and b intersect at point p.find the length of pa

2 tangents QA and QB are drawn to the circle wit centre O such that <AQB = 60 with AQ = 3 cm, find OQ

pls help

Two tangents TP and TQ are drawn to a circle with center O from an external point T. Prove that angle PTQ = 2 OPQ.

Q.5) Given, PQ = 28 cm. Find the perimeter of $\u25b3$PLM.

Prove that the perpendicular at the point of contact to the tangent to a circle passes through the centre of the circle.

Ab is a diameter and AC is a chord of a circle such that angle BAC =30 .If then tangent at C intersects AB produced in D,prove that BC=BD

If an isosceles triangle ABC in which AB = AC = 6 cm is inscribed in a

" The tangent to a circle is a special case of the secant when the two end points of its corresponding chord coincide" can someone please explain what does this means ????

A chord of circle of radius 10 cm subtends a right angle at the centre.Find the area of the corresponding minor segment and hence find the area of the major sector?

The radii of two concentric circles are 13 cm and 8 cm . AB is a diameter of the bigger circle BD is tangent to the smaller circle touching it at D.Find the length of AD

AB is a diameter of a circle. The length of AB=5cm. If O is the centre of the circle and the length of tangent segment BT=12cm , determime CT ?

From a point P, two tangents PA and PB are drawn to a circle with centre O. If OP is equal to the diameter of the circle, show that triangle APB is equilateral.

If a, b, c are the sides of a right triangle where c is the hypotenuse, then prove that radius r of the circle touches the sides of the triangle is given by r = a+b+c/2

^{0}Two tangent segments PA and PB are drawn to a circle with centre O, such that angle APB= 120degree. Prove that OP=2AP.

"PP' and QQ'are two direct common tangents to circle to two circles with centre O and O'intersecting at A ad B .The common chord AB on producing meets the tangents PP'at R and QQ' at S .Show that RS

^{2}=PP'^{2}+AB^{2}. "IF ANGLE BETWEEN TWO TANGENTS DRAWN FROM A POINT P TO A CIRCLE OF RADIUS A AND CENTER O IS 60 DEGREE THEN PROVE THAT AP = A UNDER ROOT 3.

240 students reside in a hostel.Out of which 50%go for yoga classes early in the morning, 25%have joined the gym club and 15% of them go for the morning walk.rest of the students have joined the laughing club.

A)what is the probability of students who have joined the laughing club?

B)what is the probability of students who have joined any class or club?

C)which value is depicted by students?

prove that the tangents drawn at ends of a diameter of a circle are parallel.

(1) what is the length of AB .

(2) if the perpendiculer distance from the centre of the circle to the chord AB is 3 m then find the radius of the circle.

(3) which method be apply to find the radius of the circle.

(4) what do you think of such campaign

With the vertices of triangle PQR as the centers, three circles are described each touching the other two externally. If the sides of the triangle are 9cm, 7cm and 6cm. Find the radii of the circles.

From an external point P, two tangents PA and PB are drawn to a circle

Prove that the parallelogram circumscribing a circle is a rhombus. in this question do also have to prove that the diagonals are also equal?

two circles with centres O and O' of radii 3cm and 4cm respectively intersect at two points P and Q such that OP and O'P are tangents to the two circles find the lenghth of the common chord PQ.

a) PAOB is a cyclic quadrilateral

b) PO is the bisector of angel APB

c) angel OAB = angel OPA

A circle touches all the four sides of a quadrilateral ABCD whose sides are AB = 6 cm , BC = 7 cm and CD = 4 cm. Find AD.

(A) 13 cm

(B) 15 cm

(C) 11 cm

(D) 10 cm

if from any point on the common chord of two intersecting circles , tangents be drawn to the circles , prove that they are equal .

two tangents QA and QB are drawn to the circle with center O such that <AQB = 60 degree with AQ = 3 cm , then OQ is equal to ?

PQ and RS are two parallel tangents to a circle with centre'O',another tangent AB with the point of contact 'C' intersecting PQ and RS at A and B respectively.Prove that angle AOB=90 degree.

[1]If PA and PB are tangents from an outside point P such that PA = 10 cm and angle APB = 60 .find the length of the chord AB.

[2]prove that the tangent drawn at the ends of a chord of a circle make equal with the chord.

[3]prove that the line segment joining the points of contact of two parallel tangent to a circle is a diameter of the circle.

The radius of the incircle of a triangle is 4 cm and the segments into which one side is divided by the point of contact are 6cm and 8 cm .Determine the other two sides of the triangle.if radii of the two concentric circles are 15 cm and 17 cm, then find the length of each chord of one circle which is tangent to one another

Two circles touch externally at a point P and a common tangent touches them at A and B.Prove that AB subtends a right angle at P.

AB is a chord of length 9.6cm of a circle with centre O and radius 6 cm. If the tangents at A and B intersect at point P then find the length PA.

Tangents PQ and PR are drawn to a circle such that angle RPQ= 30 degreeA chord RS is drawn parallel to tangent PQ.

Find angle RQS...??? ANSFAST...

Q). In Fig 3, the radius of incircle of $\u25b3$ABC of 84 $c{m}^{2}$ is 4 cm and the lengths of the AP and BP into which side AB is divided by the point of contact are 6 cm and 8 cm. Find lengths of the sides AC and BC.

ab and cd are common tangents to two circles of unequal radii. prove that ab=cd

BC = 7 cm, AC = 5 cm. Find AD, BE, CF where D, E & F are points of contact by triangle on circle.

From a point P, two tangents PA and PB are drawn to a circle with centre O. If OP = diameter of the circle, show that the triangle APB is equilateral.

In a right triangle ABC in which angle B = 90', a circle is drawn with AB as diameter intersecting the hypotenuse ACat P. Prove that the tangent to the circle at P visects BC.

In the fiven figure three tangents TP, TQ, and AB are respectively drawn at the points P, Q and R to a circle. The semi-perimeter of tri.TAB is equal to:?

prove that the parallelogram circumscribing a circle is a rhombus.???

Q4. In the given figure, $\u2206$ABC circumscribes the circle with centre O.

State whether the following statement is True or False. Give reason also.

"If AB + CQ = 8 cm, then the perimeter of $\u2206$ABC is 14 cm."

PAB is a secant and PT is a tangent. Prove that PA X PB =PT^{2}the difference of squares of two numbers is 180. the square of smaller no. is 8 times the larger number. find the two numbers .

The sides AB,BC,CA of triangle ABC touch a circle with centre o and radius r at P,Q,R respectively.Prove that

(1) AB+CQ= AC+BQ

(2) Area (triangle ABC) = 1/2 (perimeter of triangle ABC) x r (radius)

A circle is inscribed in a triangle ABC, having sides 8 cm , 10 cm and 12 cm. Find AD , BE and CF ( these 3 are altitudes of triangle ABC).

ACTIVITY:-TO find the area of a circle by paper cutting and pasting method. (in 2000-3000 words)

pz...... give the necessary details with diagram or by drawings.

Triangle ABC is isosceles in which AB=AC circumscribed about a circle. Prove that base is bisected by the point of contact.

Two tangents making an angle of 120 degree with each other are drawn to a circle of radius 6 cm then the length of each tangent is equal to .......?

in two concentric circles, prove that all chords of the outer circle which touches the inner circle are of equal lengths.

Equal circles with centres O and O' touch each other at X. OO' produced to meet a circle with centre O , at A. AC is a tangent to the circle whose centre is O. O'D is perpendicular to AC. Find the value of DO'/CO.....cAn aNy1 hElP MeH WiD thIs qUeStIoN pLs...???????

If from a external point P of a circle with centre O, two tangents PQ and PRare drawn such that angle of QPR=120. prove tht 2PQ=PO.

the diameters of two circles are 38cm and 18cm.the diameter of the circle whose circumference is equal to sum of the circumference of the two circles is?

The tangent at pt C of a circle and a diameter AB when extended intersect at P.If angle PCA = 110 find angle CBA

PQ is tangent to outer circle and PR is tangent to inner circle. if PQ=4cm,OQ=3cm and OR=2cm then the length of PR is

a)5cm b)root21

c)4cm d)3cm

Q1) From an external point P, tangents PA and PB are drawn to a circle with cente O.If CD is the tangent to the circle at a point E and PA=14cm, find the perimeter of triangle PCD.

Q2) a circle touches all the four sides of a quadrilateral ABCD whose three sides are AB=6cm, BC=7cm, and CD=4cm find AD.

if possible u pls. explain me these sums through video.

A boy is cycling such that the wheels of the cycle are making 140 revolutions per minute. If

Arcs have been drawn with radii 14 cms each with centres P, Q and R on triangle PQR, find the area the arcs cover

prove that line segment joining the points of contact of two parallel tangents is the diameter of the circle

^{0. }A chord BD is drawn parallel to the tangent AC. Find angle DBC.Prove that the angle between two tangents drawn from an external point to a circle is

supplementary to the angle subtended by the line segment joining the points of contact at the centre.

The length of a chain used as the boundary of a semi circular park is 90 mtrs find the area of the park.

PQL and PRM are tangents to the circle with centre o at the points Q and R ,respectively and S is a point on the circle such that angle SQL=50 and angle SRM=60. Find angle QSR.

The tangent at a point C of a circle and diameter AB when extended intersect at P. If PCA=1100 , find CBA.6. The tangent at a point C of a circle and diameter AB when extended intersect at P. If PCA=1100 , find CBA.

PLZ TELL ASAP ??