Rs Aggarwal 2015 Solutions for Class 10 Math Chapter 9 Mean, Median, Mode Of Grouped Data, Cumulative Frequency Graph And Ogive are provided here with simple step-by-step explanations. These solutions for Mean, Median, Mode Of Grouped Data, Cumulative Frequency Graph And Ogive are extremely popular among Class 10 students for Math Mean, Median, Mode Of Grouped Data, Cumulative Frequency Graph And Ogive Solutions come handy for quickly completing your homework and preparing for exams. All questions and answers from the Rs Aggarwal 2015 Book of Class 10 Math Chapter 9 are provided here for you for free. You will also love the ad-free experience on Meritnation’s Rs Aggarwal 2015 Solutions. All Rs Aggarwal 2015 Solutions for class Class 10 Math are prepared by experts and are 100% accurate.
Page No 359:
Question 1:
Find the mean, using direct method:
Class | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 |
Frequency | 3 | 5 | 9 | 5 | 3 |
Answer:
Class |
Frequency |
Mid Values |
|
0-10 |
3 |
5 |
15 |
10-20 |
5 |
15 |
75 |
20-30 |
9 |
25 |
225 |
30-40 |
5 |
35 |
175 |
40-50 |
3 |
45 |
135 |
|
|
|
|
Page No 359:
Question 2:
Find the mean, using direct method:
Class | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 |
Frequency | 7 | 5 | 6 | 12 | 8 | 2 |
Answer:
Class |
Frequency |
Mid Values |
|
0-10 |
7 |
5 |
35 |
10-20 |
5 |
15 |
75 |
20-30 |
6 |
25 |
150 |
30-40 |
12 |
35 |
420 |
40-50 |
8 |
45 |
360 |
50-60 |
2 |
55 |
110 |
|
|
|
|
Page No 359:
Question 3:
Find the mean, using direct method:
Class | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 |
Frequency | 11 | 15 | 20 | 30 | 14 | 10 |
Answer:
Class |
Frequency |
Mid Values |
|
10-20 |
11 |
15 |
165 |
20-30 |
15 |
25 |
375 |
30-40 |
20 |
35 |
700 |
40-50 |
30 |
45 |
1350 |
50-60 |
14 |
55 |
770 |
60-70 |
10 |
65 |
650 |
|
|
|
|
Page No 360:
Question 4:
Find the mean, using direct method:
Marks | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 |
Number of students | 6 | 8 | 13 | 7 | 3 | 2 | 1 |
Answer:
Class |
Frequency |
Mid Values |
|
10-20 |
6 |
15 |
90 |
20-30 |
8 |
25 |
200 |
30-40 |
13 |
35 |
455 |
40-50 |
7 |
45 |
315 |
50-60 |
3 |
55 |
165 |
60-70 |
2 |
65 |
130 |
70-80 |
1 |
75 |
75 |
|
|
|
|
Page No 360:
Question 5:
Find the mean, using direct method:
Class | 25-35 | 35-45 | 45-55 | 55-65 | 65-75 |
Frequency | 6 | 10 | 8 | 12 | 4 |
Answer:
Class |
Frequency |
Mid values |
|
25-35 |
6 |
30 |
180 |
35-45 |
10 |
40 |
400 |
45-55 |
8 |
50 |
400 |
55-65 |
12 |
60 |
720 |
65-75 |
4 |
70 |
280 |
|
|
|
|
Page No 360:
Question 6:
Find the mean, using direct method:
Class | 0-100 | 100-200 | 200-300 | 300-400 | 400-500 |
Frequency | 6 | 9 | 15 | 12 | 8 |
Answer:
Class |
Frequency |
Mid values |
|
0-100 |
6 |
50 |
300 |
100-200 |
9 |
150 |
1350 |
200-300 |
15 |
250 |
3750 |
300-400 |
12 |
350 |
4200 |
400-500 |
8 |
450 |
3600 |
|
|
|
|
Page No 360:
Question 7:
The mean of the following frequency distribution is 24. Find the value of p.
Marks | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 |
Number of students | 15 | 20 | 35 | p | 10 |
Answer:
Class |
Frequency |
Mid Values |
|
0-10 |
15 |
5 |
75 |
10-20 |
20 |
15 |
300 |
20-30 |
35 |
25 |
875 |
30-40 |
p |
35 |
35 p |
40-50 |
10 |
45 |
450 |
|
|
|
|
Page No 360:
Question 8:
Find the missing frequencies f1 and f2 in the table in given below, it is being given that the mean of the given frequency distribution is 50.
Class | 0-20 | 20-40 | 40-60 | 60-80 | 80-100 | Total |
Frequency | 17 | f1 | 32 | f2 | 19 | 120 |
Answer:
Class |
Frequency |
Mid values |
|
0-20 |
17 |
10 |
170 |
20-40 |
f1 |
30 |
30 f1 |
40-60 |
32 |
50 |
1600 |
60-80 |
52- f1 |
70 |
3640-70 f1 |
80-100 |
19 |
90 |
1710 |
|
|
|
|
Page No 360:
Question 9:
The mean of the following frequency distribution is 57.6 and the sum of the observations is 50
Class | 0-20 | 20-40 | 40-60 | 60-80 | 80-100 | 100-120 |
Frequency | 7 | f1 | 12 | f2 | 8 | 5 |
Answer:
Class |
Frequency |
Mid values |
|
0-20 |
7 |
10 |
70 |
20-40 |
f |
30 |
30 f |
40-60 |
12 |
50 |
600 |
60-80 |
18- f |
70 |
1260-70 f1 |
80-100 |
8 |
90 |
720 |
100-120 |
5 |
110 |
550 |
|
|
|
|
Page No 360:
Question 10:
Find the mean, using assumed-mean method:
Marks | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 |
Number of students | 12 | 18 | 27 | 20 | 17 | 6 |
Answer:
Class |
Frequency |
Mid values |
Deviation |
|
0-10 |
12 |
5 |
-20 |
-240 |
10-20 |
18 |
15 |
-10 |
-180 |
20-30 |
27 |
25=A |
0 |
0 |
30-40 |
20 |
35 |
10 |
200 |
40-50 |
17 |
45 |
20 |
340 |
50-60 |
6 |
55 |
30 |
180 |
|
|
|
|
|
Page No 360:
Question 11:
Find the mean, using assumed-mean method:
Class | 0-40 | 40-80 | 80-120 | 120-160 | 160-200 |
Frequency | 12 | 20 | 35 | 30 | 23 |
Answer:
Class |
Frequency |
Mid values |
Deviation |
|
0-40 |
12 |
20 |
-80 |
-960 |
40-80 |
20 |
60 |
-40 |
-800 |
80-120 |
35 |
100=A |
0 |
0 |
120-160 |
30 |
140 |
40 |
1200 |
160-200 |
23 |
180 |
80 |
1840 |
|
|
|
|
|
Page No 360:
Question 12:
Find the mean, using assumed-mean method:
Class | 100-120 | 120-140 | 140-160 | 160-180 | 180-200 |
Frequency | 10 | 20 | 30 | 15 | 5 |
Answer:
Class |
Frequency |
Mid values |
Deviation |
|
100-120 |
10 |
110 |
-40 |
-400 |
120-140 |
20 |
130 |
-20 |
-400 |
140-160 |
30 |
150=A |
0 |
0 |
160-180 |
15 |
170 |
20 |
300 |
180-200 |
5 |
190 |
40 |
200 |
|
|
|
|
|
Page No 360:
Question 13:
Find the mean, using assumed-mean method:
Class | 0-20 | 20-40 | 40-60 | 60-80 | 80-100 | 100-120 |
Frequency | 20 | 35 | 52 | 44 | 38 | 31 |
Answer:
Class |
Frequency |
Mid Values |
Deviation |
|
0-20 |
20 |
10 |
-40 |
-800 |
20-40 |
35 |
30 |
-20 |
-700 |
40-60 |
52 |
50=A |
0 |
0 |
60-80 |
44 |
70 |
20 |
880 |
80-100 |
38 |
90 |
40 |
1520 |
100-120 |
31 |
110 |
60 |
1860 |
|
|
|
|
|
Page No 361:
Question 14:
Find the arithmetic mean of each of the following frequency distributions using step-deviation method:
Marks | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 |
Number of students | 12 | 18 | 27 | 20 | 17 | 6 |
Answer:
Class |
Frequency |
Mid Values |
|
|
0-10 |
12 |
5 |
−2 |
−24 |
10-20 |
18 |
15 |
−1 |
−18 |
20-30 |
27 |
25=A |
0 |
0 |
30-40 |
20 |
35 |
1 |
20 |
40-50 |
17 |
45 |
2 |
34 |
50-60 |
6 |
55 |
3 |
18 |
|
|
|
|
|
Page No 361:
Question 15:
Find the arithmetic mean of each of the following frequency distributions using step-deviation method:
Class | Number of students |
4-8 | 2 |
8-12 | 12 |
12-16 | 15 |
16-20 | 25 |
20-24 | 18 |
24-28 | 12 |
28-32 | 13 |
32-36 | 3 |
Answer:
Class |
Frequency |
Mid values |
|
|
4-8 |
2 |
6 |
-3 |
-6 |
8-12 |
12 |
10 |
-2 |
-24 |
12-16 |
15 |
14 |
-1 |
-15 |
16-20 |
25 |
18=A |
0 |
0 |
20-24 |
18 |
22 |
1 |
18 |
24-28 |
12 |
26 |
2 |
24 |
28-32 |
13 |
30 |
3 |
39 |
32-36 |
3 |
34 |
4 |
12 |
|
|
|
|
|
Page No 361:
Question 16:
Find the arithmetic mean of each of the following frequency distributions using step-deviation method:
Class | 0-30 | 30-60 | 60-90 | 90-120 | 120-150 | 150-180 |
Frequency | 12 | 21 | 34 | 52 | 20 | 11 |
Answer:
Class |
Frequency |
Mid values |
|
|
0-30 |
12 |
15 |
−2 |
−24 |
30-60 |
21 |
45 |
−1 |
−21 |
60-90 |
34 |
75 = A |
0 |
0 |
90-120 |
52 |
105 |
1 |
52 |
120-150 |
20 |
135 |
2 |
40 |
150-180 |
11 |
165 |
3 |
33 |
|
|
|
|
|
Page No 361:
Question 17:
Find the arithmetic mean of each of the following frequency distributions using step-deviation method:
Class | 0-20 | 20-40 | 40-60 | 60-80 | 80-100 | 100-120 | 120-140 |
Frequency | 12 | 18 | 15 | 25 | 26 | 15 | 9 |
Answer:
Class |
Frequency |
Mid values |
|
|
0-20 |
12 |
10 |
−3 |
−36 |
20-40 |
18 |
30 |
−2 |
−36 |
40-60 |
15 |
50 |
−1 |
−15 |
60-80 |
25 |
70 = A |
0 |
0 |
80-100 |
26 |
90 |
1 |
26 |
100-120 |
15 |
110 |
2 |
30 |
120-140 |
9 |
130 |
3 |
27 |
|
|
|
|
|
Page No 361:
Question 18:
Find the arithmetic mean of each of the following frequency distributions using step-deviation method:
Marks | 0-14 | 14-28 | 28-42 | 42-56 | 56-70 |
Number of students | 7 | 21 | 35 | 11 | 16 |
Answer:
Class |
Frequency |
Mid values |
|
|
0-14 |
7 |
7 |
−2 |
−14 |
14-28 |
21 |
21 |
−1 |
−21 |
28-42 |
35 |
35 = A |
0 |
0 |
42-56 |
11 |
49 |
1 |
11 |
56-70 |
16 |
63 |
2 |
32 |
|
|
|
|
|
Page No 361:
Question 19:
Find the arithmetic mean of each of the following frequency distributions using step-deviation method:
Class | 10-15 | 15-20 | 20-25 | 25-30 | 30-35 | 35-40 |
Frequency | 5 | 6 | 8 | 12 | 6 | 3 |
Answer:
Class |
Frequency |
Mid values |
|
|
10-15 |
5 |
12.5 |
−2 |
−10 |
15-20 |
6 |
17.5 |
−1 |
−6 |
20-25 |
8 |
22.5 = A |
0 |
0 |
25-30 |
12 |
27.5 |
1 |
12 |
30-35 |
6 |
32.5 |
2 |
12 |
35-40 |
3 |
37.5 |
3 |
9 |
|
|
|
|
|
Page No 361:
Question 20:
Find the arithmetic mean of each of the following frequency distributions using step-deviation method:
Age (in years) | 18-24 | 24-30 | 30-36 | 36-42 | 42-48 | 48-54 |
Number of workers | 6 | 8 | 12 | 8 | 4 | 2 |
Answer:
Class |
Frequency |
Mid values |
|
|
18-24 |
6 |
21 |
−2 |
−12 |
24-30 |
8 |
27 |
−1 |
−8 |
30-36 |
12 |
33 = A |
0 |
0 |
36-42 |
8 |
39 |
1 |
8 |
42-48 |
4 |
45 |
2 |
8 |
48-54 |
2 |
51 |
3 |
6 |
|
|
|
|
|
Page No 361:
Question 21:
Find the arithmetic mean of each of the following frequency distributions using step-deviation method:
Class | 84-90 | 90-96 | 96-102 | 102-108 | 108-114 | 114-120 |
Frequency | 15 | 22 | 20 | 18 | 20 | 25 |
Answer:
Class |
Frequency |
Mid values |
|
|
84-90 |
15 |
87 |
−2 |
−30 |
90-96 |
22 |
93 |
−1 |
−22 |
96-102 |
20 |
99 = A |
0 |
0 |
102-108 |
18 |
105 |
1 |
18 |
108-114 |
20 |
111 |
2 |
40 |
114-120 |
25 |
117 |
3 |
75 |
|
|
|
|
|
Page No 362:
Question 22:
Find the arithmetic mean of each of the following frequency distributions using step-deviation method:
Class | 500-520 | 520-540 | 540-560 | 560-580 | 580-600 | 600-620 |
Frequency | 14 | 9 | 5 | 4 | 3 | 5 |
Answer:
Class |
Frequency |
Mid values |
|
|
500-520 |
14 |
510 |
−2 |
−28 |
520-540 |
9 |
530 |
−1 |
−9 |
540-560 |
5 |
550 = A |
0 |
0 |
560-580 |
4 |
570 |
1 |
4 |
580-600 |
3 |
590 |
2 |
6 |