Math Ncert Exemplar 2019 Solutions for Class 11 Science Maths Chapter 13 Limits And Derivatives are provided here with simple step-by-step explanations. These solutions for Limits And Derivatives are extremely popular among class 11 Science students for Maths Limits And Derivatives Solutions come handy for quickly completing your homework and preparing for exams. All questions and answers from the Math Ncert Exemplar 2019 Book of class 11 Science Maths Chapter 13 are provided here for you for free. You will also love the ad-free experience on Meritnation’s Math Ncert Exemplar 2019 Solutions. All Math Ncert Exemplar 2019 Solutions for class 11 Science Maths are prepared by experts and are 100% accurate.

Page No 239:

Question 1:

Evaluate :

limx3 x2-9x-3

Answer:

limx3 x2-9x-3=limx3 x2-32x-3=limx3 (x-3)(x+3)x-3                          a2-b2=(a-b)(a+b)=limx3 (x+3)=3+3=6

Page No 239:

Question 2:

Evaluate :

limx12 4x2-12x-1

Answer:

limx12 4x2-12x-1=limx122x2-122x-1=limx122x-12x-12x-1=limx122x-1=2×12+1=1+1=2

Page No 239:

Question 3:

Evaluate :

limh0 x+h-xh

Answer:

Use the formula limh0 xn-anx-a=n.an-1.
h0x+hxAlso, h=x+h-x
limh0x+h-xh=limh0x+h-xx+h-h=limh0x+h12-x12x+h-h=12 x12-1                        limhaxn-anx-a=n an-1=12x-12=12x

Page No 239:

Question 4:

Evaluate :
limx0 x+213-213x

Answer:

limx0 x+213-213x=limx0 x+213-213x+2-2=13×213-1               limxa xn-anx-a=nan-1=13×21-33=13×2-23=13(2)23

Page No 239:

Question 5:

Evaluate :

limx1 1+x6-11+x2-1

Answer:

Divide the numerator and denominator by x.
limx0 1+x6-11+x2-1=limx0 1+x6-1x1+x2-1x=limx0 1+x6-1(1+x)-11+x2-1(1+x)-1=limx0 1+x6-16(1+x)-11+x2-12(1+x)-1                            limxa f(x)g(x)=limxaf(x)limxag(x)    =6(1)6-12(1)2-1                                          limxa xn-ana-a=nan-1 =6×12×1=62=3        

Page No 239:

Question 6:

Evaluate :

limxa 2+x52-a+252x-a

Answer:

limxa 2+x52-a+252x-a=limxa 2+x52-a+252x-a+2-2=limxa 2+x52-a+2522+x-a+2=52(a+2)5-12                             limxaxn-anx-a=nan-1 and (2+x)(a+2) since xa=52(a+2)5-22=52(a+2)32



Page No 240:

Question 7:

Evaluate :

limx1 x4-xx-1

Answer:

limx1 x4-xx-1=limx1x24-xx-1=limx1x8-xx-1=limx1x x7-1x-1=limx1x x72-1x12-1=limx1x72-1x12-1×limx1x                 limxaf(x)×g(x)=limxaf(x)×limxag(x)=limx1x72-1x12-1×1=limx1x72-172x-1x12-112x-1=limx1 x72-172x-1limx1 x12-112x-1                               limx1f(x)g(x)=limx1 f(x)limx1 g(x)=72×(1)72-112×(1)12-1=7212=7 

Page No 240:

Question 8:

Evaluate :

limx2 x2-43x-2-x+2

Answer:

Multiply the numerator and denominator by 3x-2+x-2.
limx2 x2-43x-2-x+2=limx2 x2-43x-2-x+2×3x-2-x+23x-2-x+2=limx2 x2-4 3x-2+x+23x-22-x+22                            (a-b)(a+b)=a2-b2=limx2 x2-4 3x-2+x+23x-2-x+2=limx2 x2-4 3x-2+x+23x-2-x+2=limx2 x2-4 3x-2+x+22x-4=limx2 x-2x+2 3x-2+x+22x-2                   a2-b2 =(a-b)(a+b) =limx2 x+2 3x-2+x+22    = x+2 6-2+2+22= 4 4+42        = 2×(2+2)=8   

Page No 240:

Question 9:

Evaluate :

limx2 x4-4x2+32x-8

Answer:

limx2 x4-4x2+32x-8=limx2 (x2)2-(2)2x2+42x-2x-8=limx2 (x2-2)-(x2+2)xx+42-2x+42                    a2-b2=(a-b)(a+b)=limx2 x2-22-(x2+2)x-2-x+42=limx2 x-2-(x+2)x2+2x-2-x+42                    a2-b2=(a-b)(a+b) =limx2 x+2-x2+2x+42=2+2-x+22+42=22×452=85

Page No 240:

Question 10:

Evaluate :

limx1 x7-2x5+1x3-3x2+2

Answer:

limx1 x7-2x5+1x3-3x2+2=limx1 x7-x5-x5+1x3-x2-2x2+2=limx1 x5x2-1-1x5-1x2x-1-2x2-1
Divide the numerator and denominator by (x – 1).
limx1 x5x2-1x-1-(x5-1)x-1x2(x-1)x-1-2(x2-1)x-1=limx1 x5x2-1(x+1)x-1-x5-12x-1x2-2(x-1)(x+1)x-1=limx1 x5x+1-x5-15x-1x2-2x+1= limx1 x5x+1-limx1 x5-15x-1limx1 x2-2x-2=2-limx1x5-15x-1-3=2-5(1)5-1-3                          limx1 xn-anx-a=n an-1=-3-3=1

Page No 240:

Question 11:

Evaluate :

limx0 1+x3-1-x3x2

Answer:

Multiplying the numerator and denominator by 1+x3-1+x3.
limx0 1+x3-1-x3x2=limx0 1+x3-1-x3x2×1+x3-1-x31+x3+1+x3=limx0 1+x32-1-x32x2 1+x3 + 1+x3                            a2-b2=(a-b)(a+b)=limx0 1+x3-1+x3x21+x3 +1-x3=limx0 2x3x21+x3 +1-x3=limx0 2x31+x3 +1-x3=0

Page No 240:

Question 12:

Evaluate :

limx-3 x3+27x5+243

Answer:

Divide the numerator and denominator by (x + 3).
limx-3 x3+27x5+243=limx-3 x3+27x+3x5+243x+3=limx-3x3+27x+3limx-3x5+243x+3                               limxaf(x)g(x)=limxaf(x)limxag(x) =limx-3 x3+(-3)3x-3limx-3x5-(-3)5x--3=3 -33-1 5 (-3)5-1                          limxa xn-anx-a =n an-1=3×(-3)25×(-3)4=115

Page No 240:

Question 13:

Evaluate :

limx12 8x-32x-1-4x2+14x2-1

Answer:

limx12 8x-32x-1-4x2+14x2-1=limx128x-32x-1-4x2+12x2-12=limx128x-32x-1-4x2+12x-1-2x-1           a2-b2=a-b(a+b)=limx128x-32x-1-4x2-12x-12x+1=limx1216x2+8x-6x-3-4x2-12x-12x+1=limx1212x2+2x-42x-12x+1=limx1226x2+x-22x-12x+1=limx122(6x2+4x-3x-2)2x-12x+1=limx1222x3x+2-1 (3x+2)2x-12x+1=limx1222x-1 (3x+2)2x-12x+1=limx122(3x+2)2x-1=23×12+22×12+1=23+421+1=72

Page No 240:

Question 14:

Evaluate :
Find 'n', if limx2 xn-2nx-2=80, n N

Answer:

limx2 xn-2nx-2=80, n N
 limxa xn-anx-a=nan-1 n2n-1=80n×2n-1=5×16n×2n-1=5×24n×2n-1=5×25-1n=5

Page No 240:

Question 15:

Evaluate : limxa sin 3xsin 7x

Answer:

limx0 sin 3xsin 7x= limx0 sin 3xlimx0 sin 7x                 limx0 f(x)g(x)=limx0 f(x)limx0 g(x)= limx0 sin 3x3x×3xlimx0 sin 7x7x× 7x=limx0 sin 3x3x·limx03xlimx0 sin 7x7x·limx0 7x=1×limx0 3x1×limx0 7x                                  limx0 sinxx=1=limx0 3xlimx0 7x   =limx0 3x7x=limx0 37=37    

Disclaimer: In the question, the limit is x → 0; not a.

Page No 240:

Question 16:

Evaluate :

limx0 sin2 2xsin2 4x

Answer:

limx0 sin2 2xsin2 4x=limx0 sin2 2xsin2 2(2x)=limx0 sin2 2x(2sin 2x cos 2x)2                    sin 2x = 2 sinx cosx=limx0 sin2 2x4sin2 2x cos2 2x=limx0 14cos2 2x= 14×12                                          cos 0=1 = 14  

Page No 240:

Question 17:

Evaluate :

limx0 1-cos 2xx2

Answer:

limx0 1-cos 2xx2=limx0 1-1+2sin2xx2                       cos 2x=1-2sin2x=limx0 2 sin2xx2=2 limx0 sin2xx22=2×12                                         limx0 sinxx=1=2                                               

Page No 240:

Question 18:

Evaluate :

limx0 2sin x-sin 2xx3

Answer:

limx0 2sin x-sin 2xx3=limx02sin x-2sin x cosxx3                             sin2x=2sinx cosx=limx02sin x-2sinx1-cosxx3=limx02sin xx×limx01-cosxx3                          limxa f(x) g(x)=limxag(x)=2×1×limx01-cosxx2                                   limx0sinxx=1=2 limx01-1+2sin2x2x2                                  cos2x=1-2sin2x=2 limx02sin2x2x2=4 limx0sinx22x24×4=44 limx0sinx2x22=1                                                                limx0sinxx=1

Page No 240:

Question 19:

Evaluate :

limx0 1-cos mx1-cos nx

Answer:

limx0 1-cos mx1-cos nx=limx01-1+2sin2mx21-1+2sin2nx2                     cos2x=1-2sin2x=limx0sin2mx2sin2nx2=limx0sin2mx2mx22×mx22sin2nx2nx22×nx22=limx0sin2mx2mx22×m2sin2nx2nx22×n2=m2n2limx0sin2mx2mx22sin2nx2nx22=m2n2limx0sin2mx2mx22limx0sin2nx2nx22                                   limx0f(x)g(x)=limxaf(x)limxag(x)=m2n2×11=m2n2

Page No 240:

Question 20:

Evaluate :

limxπ3 1-cos 6x2 π3-x

Answer:

limxπ3 1-cos 6x2 π3-x=limxπ31-1+2sin23x2 π3-x                               cos2x=1-2sin2x=limxπ32 sin3x2 π3-x=limxπ3 sinπ-3x π3-x                                         sinπ-x=sinx=limxπ3 3sinπ-3x π-3x=3×1                                                               limx0sinxx=1 and xπ3 so π-3x0

Disclaimer:- In the question, the denominator is 2π3-x and not 2 π3-x.

Page No 240:

Question 21:

Evaluate :

limxπ4 sin x-cos xx-π4

Answer:

limxπ4 sin x-cos xx-π4=limxπ42sinx × 12-12×cosxx-π4=limxπ42sinx cosπ4 -sinπ4 cosxx-π4=2limxπ4sin x-π4x-π4                                  sinA-B=sin A cos B - sin B cos A=2×1                                                         limx0sinxx=1=2

Page No 240:

Question 22:

Evaluate :

limxπ6 3sin x-cos xx-π6

Answer:

limxπ6 3sin x-cos xx-π6=limxπ6232×sinx-12cosxx-π6=limxπ62sinx × cosπ6- sinπ6cosxx-π6=limxπ62sinx-π6x-π6                                           sinA-B=sin A cos B-sin B cos A=2×1=2                                                                      limx0sinxx=1

Page No 240:

Question 23:

Evaluate :

limx0 sin 2x+3x2x+tan 3x

Answer:

limx0 sin 2x+3x2x+tan 3x=limx0 sin 2x+3x2x×2x2x+tan 3x3x×3x=limx0 sin 2x2x+3223+tan3x3x×23=23 limx0 sin 2x2x+32limx0 23+tan3x3x=23 1+2323+1                             limx0 sinxx=1 and limx0tanxx=1=23 2+322+33=23 5253=23 ×32=1

Page No 240:

Question 24:

Evaluate :

limxa sin x-sin ax-a

Answer:

limxa sin x-sin ax-a=limxa2cosx+a2sinx-a2x-a                                             sin C -sin D=2cosC+D2 sinC-D2=limxa2cosx-a2sinx-a2x-a × x+a×x+a=limxa2cosx+a2 sinx-a2x-a×x+a                      a2-b2=(a+b)(a-b) =limxa 2cosx+a2sinx-a2x-a2×2x+a =limxa cosx+a2 × x+alimxasinx-a2x-a2            limxaf(x)g(x)=limxaf(x)+limxag(x) =cosa+a2  a+a×limxasinx-a2x-a2=cos a ×2a×limxasinx-a2x-a2=2a cosa×1                                                                                   limxasinxx =1=2acosa

Page No 240:

Question 25:

Evaluate :

limxπ6 cot2 x-3cosec x-2

Answer:

limxπ6 cot2 x-3cosec x-2=limxπ6cosec2 x-1-3cosec x-2                     cosec2x=1+cot2x=limxπ6cosec2 x-4cosec x-2=limxπ6cosec2 x-22cosec x-2=limxπ6cosec x-2cosec x+2cosec x-2=limxπ6cosec x-2=cosec π6+2=2+2=4

Page No 240:

Question 26:

Evaluate :

limx0 2-1+cosxsin2x

Answer:

limx0 2-1+cosxsin2x=limx02-1+cos2x2-1sin2x                   cos2x=2cos2x-1=limx02-1+cos2x2sin2x=limx02 1-cosx2sin2x=limx02 1-1+2sin2x4sin2x                   cos2x=1-2sin2x=limx022sin2x4sin2x×x42x42=limx022sin2x4x42×x42sin2x=22limx0sin2x4x42×116 sin2xx2=22limx0sin2x4x42×limx0116 sin2xx2=2216limx0sin2x4x42×limx01sin2xx2                        limx0 f(x)g(x)=limx0f(x)×limxag(x)=142limx0sinx4x42×limx01sinxx2=142×1×1                                               limx0 sinxx=1=142

Page No 240:

Question 27:

Evaluate :

limx0 sin x-2sin 3x+sin 5xx

Answer:

limx0 sin x-2sin 3x+sin 5xx=limx0sin xx-2 sin 3xx+sin 5xx=limx0sinxx-6 sin 3x3x+5x sin 5x5x=1-6×1+5×1                   limx0sin xx=1=1-6+5=0

Page No 240:

Question 28:

Evaluate :

If limx1 x4-1x-1=limxkx3-k3x2-k2, then find the value of k.

Answer:

limx1 x4-1x-1=limxkx3-k3x2-k2limx1 x4-14x-1=limxkx3-k3x2-k24(1)4-1=limxkx3-k3x2-k2                           limxaxn-anx-a=n an-1 4=limxkx3-k3x-kx2-k2x-k4=limxkx3-k3x-klimxkx2-k2x-k                                   limxaf(x)g(x)=limxaf(x)limxag(x)4=limxkx-kx2+xk+k2x-klimxkx-kx+kx-k 4=limxkx2+xk+k2limxkx+k 4=k2+k2+k2k+k 4=3k22k3k2=4k=83

Page No 240:

Question 29:

Differentiate the functions w. r. to x:

x4+x3+x2+1x

Answer:

dx4+x3+x2+1xdx=dx3+x2+x+1xdx=dx3dx+dx2dx+dxdx+d1xdx=3x2+2x+11x2=3x4+2x3+x21x2

Page No 240:

Question 30:

Differentiate the functions w. r. to x:

x+1x3

Answer:

Let y = x+1x3
  dydx=3x+1x31dx+1xdx      (By chain rule)= 3x+1x2dxdx+d1xdx=3x+1x211x2=3x+12x2×x21x2=3x+12x1x+1x4=3x1x+13x4

Page No 240:

Question 31:

Differentiate the functions w. r. to x:

(3x + 5) (1 + tanx)

Answer:

Let y = (3x + 5) (1 + tan x)
dydx=ddx3x+51+tan  x=3x+5ddx1+tan  x+1+tan  xddx3x+5     [By product rule]=3x+5sec2x+1+tan x×3=3x  sec2x+5sec2x+3tan x+3



Page No 241:

Question 32:

(sec x – 1) (sec x + 1)

Answer:

Let y = (sec x – 1) (sec x + 1)

= sec2x – 1
= tan2x
Differentiate y with respect to x.
​
​dydx=dtan2xdx=2tan xdtan xdx         [By chain rule]=2tan x  sec2x

Page No 241:

Question 33:

Differentiate the functions w. r. to x:

3x+45x2-7x+9

Answer:

Let y = 3x+45x2-7x+9
Use the quotient rule to differentiate y with respect to x.
dydx=5x27x+9d3x+4dx3x+4d5x27x+9dx5x27x+92=35x27x+93x+410x75x27x+92=15x221x+2730x2+21x40x+285x27x+92=15x240x+555x27x+92

Page No 241:

Question 34:

Differentiate the functions w. r. to x:

x5-cos xsin x

Answer:

Let y = x5-cos xsin x
Use the quotient rule to differentiate y with respect to x.
dydx=sin xdx5– cos xdxx5cos xdsin xdxsin2x=sin x5x4+sin x-x5cos xcosxsin2x=5x4sinx+sin2x-x5-cos x+cos2x=5x4sin xx5cos x+1sin2x                [ Sin2x+cas2x=1]

Page No 241:

Question 35:

Differentiate the functions w. r. to x:

x2cosπ4sin x

Answer:

Let y = x2cosπ4sin x
y=x2×12sin xy=12x2sinx
Differentiate y with respect to x using quotient rule.
dydx=12sin xdx2dxx2dsin xdxsin2x=122x sin xx2cos xsin2x=x22 sin xsin2xx cos xsin2x=x22cosec xx cot x cosec x=x cosec x22x cot x


 

Page No 241:

Question 36:

(ax2 + cotx) (p + q cosx)

Answer:

Let y = (ax2 + cot x) (p + q cos x)
Differentiate y with respect to x using product rule.
​dydx=ax2+cot x.dp+q cos xdx+p+q cos xdax2+cot xdx=ax2+cot xq sin x+p+q cos x2axcosec2x=q sin xax2+cot x+p+q cos x2axcosec2x

Page No 241:

Question 37:

a+b sinxc+d cosx

Answer:

Let y=a+b sin xc+d cos x
Differentiate y with respect to x using quotient rule.
​dydx=c+d cos xda+b sin xdxa+b sin xdc+d cos xdxc+d cos x2=c+d cos xb cos xa+b sin xd sin xc+d cos x2=bc cos x+bd cos2x+ad sin x+bd sin2xc+d cos x2=bc cos x+ad sin x+bdcos2x+sin2xc+d cos x2=bc cos + ad sin x+bdc+d cos x2                [cos2x+sin2x=1]

Page No 241:

Question 38:

(sin x + cosx)2

Answer:

Let y = (sin x + cos x)2
= sin2x + cos2x + 2 sin x cos x
=
1 + sin 2x
Differentiate y with respect to x
dydx=ddx1+sin2x=cos 2x×d2xdx      [By chain rule]
= 2cos 2x 
 

Page No 241:

Question 39:

(2x – 7)2 (3x + 5)3

Answer:

Let y = (2x – 7)2 (3x + 5)3
Differentiate y with respect to x using product rule.
dydx=2x-72ddx3x+53+3x+53dydx2x-72
=2x-72×33x+52ddx+3x+53×22x-7d2x-7dx
= (2x – 7)2 × 3(3x + 5)2 × 3 + (3x + 5)3 × 2(2x × 7) × 2
= 9(2x – 7)2 (3x + 5)2 + 4(2x – 7) (3x + 5)3
= (2x – 7) (3x + 5)2 [9(2x – 7) + 4(3x + 5)]
= (2x – 7) (3+ 5)[18– 63 + 12+ 20]
= (2x – 7) (3x + 5)2 [18x – 63 + 12x + 20]
= (2x – 7) (3x + 5)2 (30x – 43)
 

Page No 241:

Question 40:

x2 sinx + cos2x

Answer:

Let y = x2 sin x + cos 2x
Differentiate y with respect to x using sum and product rule.
dydx=x2dsinxdx+sinxdx2dx+dcos2xdx
=x2cosx + sinx 2x + (-sin 2x) d(2x)dx  (By chain rule)      
= x2 cos x + 2x sin x – 2sin 2x

Page No 241:

Question 41:

sin3x cos3x

Answer:

Let y = sin3cos3x
Differentiate y with respect to x using product rule.
dydx=sin3xdcos3xdx+cos3xdsin3xdx=sin3x 3cos2xdcosxdx+cos3x 3sin2xdsinxdx
= sin3x 3cos2x (– sin x) + cos3 x 3sin2x (Note: ignore it cos x)
= –3 sin4x cos2x + 3cos4x sin2x
= 3 sin2x cos2x (cos2x – sin2x)
=344sin2xcos2x cos 2x=342sinx cosx2cos 2x=34sin2 2x cos 2x
 

Page No 241:

Question 42:

1ax2+bx+c

Answer:

Let y=1ax2+bx+c
y = (ax2 + bx + c)–1
Differentiate y with respect to x using product and chain rule.
dydx=-ax2+bx+c2dax2+bx+cdx=-1ax2+bx+c2×2ax+b=-2ax+bax2+bx+c2
 

Page No 241:

Question 43:

Differentiate of the function with respect to ‘x
cos (x2 + 1)

Answer:

Let f(x) = cos(x2 + 1)
Differentiate f(x) with respect to x using first principle.
dfxdx=limh0fx+h-f(x)h=limh0cosx+h2+1-cosx2+1h=limh0-2 sinx+h2+1+x2+12sinx+h2+1-x2-12h
                             CosC - CosD = -2sinC+D2sinC-D2
=limh01h-2sinx+h2+x2+22sinh2+2hx2=limh0-2sinx+h2+x2+22limh0sinhh+2x2hh+2x2×h+2x2
=-2limh0sinx+h2+x2+22limh0h+2x2limh0sinxx=1=-2sinx2+x2+22×2x2
= –2x sin(x2 + 1)
 

Page No 241:

Question 44:

Differentiate of the function with respect to ‘x
ax+bcx+d

Answer:

Let f(x) = ax+bcx+d
f(x+h)=ax+h+bcx+h+d
Differentiate f(x) with respect to x using first principle.
ddxf(x)=limh01hfx+h-f(x)=limh01hax+h+bcx+h+d-ax+bcx+d=limh01hax+ah+bcx+d-ax+bcx+ch+dcx+h+dcx+d=limh01hacx2+adx+achx+adh+bcx+bd-acx2-achx-adx-bcx-bch-bdcx+h+dcx+d=limh01hadh-bchcx+h+dcx+d=limh01had-bccx+h+dcx+d=ad-bccx+d2

Page No 241:

Question 45:

Differentiate of the function with respect to ‘x
x23

Answer:

Let f(x) = x23
f(x + h) = x+h23
Differentiate f(x) with respect to x using first principle.
ddxf(x)=limh01hfx+h-fx=limh01hx+h23-x23=limh0x+h23=x23x+h-x=23x23-1            limxaxn-anx-a=nan-1 and x + h  x since h 0=23x-13=23x13
 

Page No 241:

Question 46:

Differentiate of the function with respect to ‘x
x cosx

Answer:

Let f(x) = x cos x
f(x + h) = (x + h) cos(x + h)
Differentiate f(x) with respect to x using first principle.
df(x)dx=limh01hx+hcosx+h-xcosx=limh01hxcosx+h+hcosx+h-xcosx=limh01hxcosx+h-cosx+hcosx+h=limh01hxcosx+h-cosx+hcosx+h
                                 cosC-cosD=-2 sinC+D2sinC-D2
          =-2limh0 xsinx+h2limh0 sinh2h2×12+limh0 cos(x+h)=-limh0 xsinx+h2×1+limh0 cos(x+h)  limh0 sinxx=1
           = – sin x + cos x 
           = cos x – sin x
 

Page No 241:

Question 47:

Evaluate

limy0x+y sec x+y-x sec xy

Answer:

limy0x+ysecx+y-xsecxy=limy0x+ycosx+y-xcosxy=limy0x+ycosx-xcosx+yycosxcos(x+y)=limy0xcosx=ycosx-xcos(x+y)ycosx cos(x+y)=limy0xcosx-cos(x+y)+ycosxycosx cos(x+y)=limy0x-2sinx-x-y2sinx+x+y2+ycosxycosxcos(x+y)=limy02xsiny2sin2x+y2+ycosxycosx cos(x+y)=limy02x2×siny2y2×sin2x+y2cosx cos(x+y)+limy01cos(x+y)=limy0x×1×sin2x+y2cosx cos(x+y)+limy01cos(x+y)
                 limy0sinxx=1
=xsin2x2cos2x+1cosx
= x tanx sexx + secx
= sec x (x tanx + 1)
 

Page No 241:

Question 48:

Evaluate
limx0 sinα+βx+sinα-βx+sin 2αxcos 2βx-cos 2αx·x

Answer:

limx0sinα+βx+sinα-βx+sin2αxcos2βx-cos2αx×x=limx02sinαx+βx+αx-βx2cosαx+βx-αx+βx2+sin2αxcos2βx-cos2αx×x=limx02sinαxcosβx+2sinαxcosαx-2sin2βx+2αx2sin2βx+2αx2×x
                cosC-cosD=-2sinC+D2sinC-D2
=limx02sinαxcosβx+cosαx2sinαx+βxsinαx-βx×x=limx0xsinαx2cosα+β2xcosα-β2x2sinα+β2xcosα+β2x×2sinα-β2xcosα-β2x
                           cosC + cosD = 2cosC+D2cosC-D2
=limx02x sinαx4sinα+β2x sinα-β2x=limx02αx2sinαxαx4α+β2xsinα+β2xα+β2xα-β2xsinα-β2xα-β2x
=limx02αx24α+β2α-β2x2           limx0sinxx=1
=2α4α+βα-β4=2αα2-β2

Page No 241:

Question 49:

Evaluate
limxπ4tan3x-tanxcos x+π4

Answer:

limxπ4tan3x-tanxcosx+π4=limxπ4-tanx1-tan2xcosx+π4=limxπ4-tanx1-tanx1+tanxcosx+π4   a2-b2=a-ba+b=limxπ4-tanx1+tanxlimxπ41-tanxcosx+π4=-1×1+1limxπ4cosx-sinxcosxcosx+π4=-2limxπ42cosπ4cosx-sinxsinπ4cosx cosx+π4=-2limxπ42cosx+π4cosx cosx+π4     cos(A+B)=cosAcosB-sinAsinB=-2limxπ42cosx=-22cosπ4=-2212=-22×2=-4

Page No 241:

Question 50:

Evaluate
limxπ1-sin x2cosx2 cosx4-sinx4

Answer:

limxπ 1-sinx2cos x2cosx4-sinx4=limxπ1-2 sinx4 cosx4cosx2cosx4-sinx4=limxπsin2x4+ cos2x4-2sinx4cosx4cosx2cosx4-sinx4=limxπ cosx4-sinx42cosx2cosx4-sinx4                   a-b2=a2+b2-2ab=limxπ cosx4-sinx4cosx2=limxπ cosx4-sinx4cos2x4-sin2x4                   cos 2x=cos2x-sin2x=limxπ cosx4-sinx4cosx4-sinx4 cosx4+sinx4                    a2-b2=a-b-a+b=limxπ 1cosx4+sinx4 = 1cosπ4+sinπ4=112+12=22=12

Page No 241:

Question 51:

Evaluate
Show that limx4x-4x-4 does not exists

Answer:

Left hand limit:

LHL=limxπ4x4x4                       x4=x4forx<4=-1

Right hand limit:

RHL=limxπ+4x4x4                       x4=x4forx>4=-1

∴ LHL ≠ RHL

Thus, limit does not exist.



Page No 242:

Question 52:

Evaluate
Let fx=k cos xπ  2xwhen xπ23x=π2and if limxπ2fx=fπ2, find the value of k.

Answer:

Left hand limit:

LHL=limxπ-2k cosxπ-2x=limh0k cos π2-h π-2 π2-h=limh0k sin h π-π+2h                             cosπ2-x=sinx=limh0k sin h 2h=k2                                                   limx0 sinxx=1

Right hand limit:

RHL=limxπ+2k cosxπ-2x=limh0k cos π2+h π-2 π2+h=limh0k -sin h π-π-2h                             cosπ2+x=-sinx=limh0k sin h 2h=k2limh0sin h h=k2                                                   limx0 sinxx=1

Since limxπ2fx=fπ2 and fπ2=3,

k2=3k=6

Hence, the value of k is 6.

Page No 242:

Question 53:

Evaluate
Let fx=x+2x-1cx2x>-1, find 'c' iflimx-1fx exists.

Answer:

fx=x+2,x-1cx2,x>-1

Left hand limit:

LHL=limx-1-fx=limx-1-fx+2=limh0 -1-h+2=limh0 1-h=1

Right hand limit:

RHL=limx-1+fx=limx-1+cx2=limh0- c-1+h2=c

If limx-1fx exists, then LHL = RHL.

c = 1

Hence, the value of c is 1.

Page No 242:

Question 54:

limxπ sin xx-π is

(A) 1
(B) 2
(C) −1
(D) −2

Answer:

limxπ sin xx-π=limxπ sinx-π-x=limxπ sinx π-x-π-x                       sinπ-x=sinx=-limxπ sin π-xπ-x=-1                                                limx0 sin xx=1 and π-x0x-π

Hence, the correct answer is option c.

Page No 242:

Question 55:

limx0 x2 cos x1-cos x is

(A) 2

(B) 32

(C) -32

(D) 1

Answer:

limx0 x2 cosx 1-cosx=limx0 x2cosx2sin2x2             1-cos x=2sin2x2=limx0 x22sin2x2×limx0 cosx                 limxafx gx=limxafx+limxagx=2limx0 x22sin2x2×1=2limx0 x2sinx22=2×1                                                   limx0 sinxx=1=2

Hence, the correct answer is option a.

Page No 242:

Question 56:

limx0 1+xn-1x is

(A) n

(B) 1

(C) −n

(D) 0

Answer:

limx01+xn-1x=limx0 1+xn-11+x-1=lim1+x1 1+xn-1n1+x-1=n1n-1                           limxa xn-anx-a=x an-1=n

Hence, the correct answer is option a.

Page No 242:

Question 57:

limx1 xm-1xn-1 is

(A) 1

(B) mn

(C) -mn

(D) m2n2

Answer:

limx1 xm-1xn-1=limx1 xm-1x-1xn-1x-1= limx1xm-1nx-1limx1xn-1nx-1              limxa fxgx= limxafxlimxagx= m1m-1n1n-1                    limxa xn-anx-a=nan-1=mn

Hence, the correct answer is option b.

Page No 242:

Question 58:

limx0 1-cos 4θ1-cos 6θ is

(A) 49

(B) 12

(C) -12

(D) −1

Answer:

limθ0 1-cos 4θ1-cos 6θ=limθ0 1-cos 2 2θ1-cos 2 3θ=limθ0 2sin2 2θ2sin2 3θ=limθ0 sin22θ2θ2×2θ2sin2 3θ3θ2×3θ2=49limθ0 sin22θ2θ2sin2 3θ3θ2=49 limθ0sin22θ2θ2limθ0sin2 3θ3θ2     limxa fxgx= limxafxlimxagx=49×11=49

Hence, the correct answer is option c.



Page No 243:

Question 59:

limx0 cosec x-cot xx is

(A) -12

(B) 1

(C) 12

(D) −1

Answer:

limx0cosecx-cotxx=limx0 1sinx-cosxsinxx=limx0 1-cosxx sinx=limx0 2 sin2x2x 2 sinx2 cosx2=limx0 tanx2x=limx0 tanx2x2×12=1×12                          limx0 tanxx=1=12

Hence, the correct answer is option c.

Page No 243:

Question 60:

limx0 sin xx+1-1-x is

(A) 2

(B) 0

(C) 1

(D) −1

Answer:

limx0 sinxx+1-1-x=limx0 sinx1+x-1-x×1+x+1-x1+x+1-x=limx0 sinx1+x+1-x1+x-1+x=limx0 sinx1+x+1-x2x=12limx0 sinxx×limx01+x+1-x                                           limxa fxgx=limxa fx×limxagx =12×1×1+1                                                                         limx0 sinxx=1=12×2=1

Hence, the correct answer is option c.

Page No 243:

Question 61:

limxπ4 sec2 x-2tan x-1 is

(A) 3

(B) 1

(C) 0

(D) 2

Answer:

limxπ4 sec2x-2tanx-1=limxπ4 1+tan2x-2tanx-1=limxπ4 tan2x-1tanx-1=limxπ4 tan x-1 tan x+1tan x-1                  a2-b2=a-b a+b=limxπ4 tan x+1= tan x4+1= 1+1=2

Page No 243:

Question 62:

limx1 x-12x-32x2+x-3 is

(A) 110

(B) -110

(C) 1

(D) None of these

Answer:

limx1x-1 2x-32x2+x-3=limx1 x-1 2x-32x2+3x-2x-3=limx1 x-1 2x-3x2x+3-12x+3=limx1 x-1 2x-3x-1 2x+3=limx1 x-1 2x-3x2-12 2x+3=limx1 x-1 2x-3x-1 x+1 2x+3            a2-b2=a-ba+b=limx1  2x-3 x+1 2x+3= 2-3 1+1 2+3=-110

Hence, the correct answer is option b.

Page No 243:

Question 63:

If fx=sinxx,x00,x=0, where [.] denotes the greatest integer function, then limx0fx is equal to

(A) 1

(B) 0

(C) −1

(D) None of these

Answer:

fx=sinxx,x00,x=0

Left hand limit:

LHL=limx0-fx=limx0-sin xx=limh0 sin 0-h0-h=sin -1-1=-sin 11=sin 1

Right hand limit:

RHL=limx0+fx=limx0+sin xx=limh0 sin 0+h0+h=sin 00=undefined

∴ LHL ≠ RHL

Thus, limit does not exist.

Hence, the correct answer is option d.

Page No 243:

Question 64:

limx0 sin xx is

(A) 1

(B) −1

(C) does not exist

(D) None of these

Answer:

limx0 sin xx
 
Left hand limit:

LHL=limx0--sin xx                      sin x=-sin x for x<0=-limx0-sin xx =-limh0 sin 0-h0-h=-limh0 sin hh=-1                                         limx0 sin xx=1

Right hand limit:

RHL=limx0+sin xx=limh0 sin 0+h0+h=limh0 sin hh=1                                         limx0 sin xx=1

Since LHL ≠ RHL, the limit does not exists.

Hence, the correct answer is option c.

Page No 243:

Question 65:

Let fx=x2-1,0<x<22x+3,2x<3, the quadratic equation whose roots are limx2-fx andlimx2+fx is

(A) x2 − 6x + 9 = 0
(B) x2 − 7x + 8 = 0
(C) x2 − 14x + 49 = 0
(D) x2 − 10x + 21 = 0

Answer:

fx=x2-1,0<x<22x+3,2 x <3

 limx2-fx=limx2-x2-1=limh0 2-h2-1=limh0 4+h2-4h-1=limh0 3-4h+h2=3

Now,  limx2+fx=limx2+2x+3=limh0 22+h+3=limh0 4+2h+3=7

Thus, the roots of the required quadratic equation is 3 and 7.

x2 – (3 + 7) x + 3 × 7 = 0

x2 – 10x + 21 = 0

Hence, the correct answer is option d.



Page No 244:

Question 66:

limx0 tan 2x-x3x-sin x is

(A) 2

(B) 12

(C) -12

(D) 14

Answer:

limx0 tan 2x-x3x-sin x=limx0xtan2xx-1x3-sinxx=limx0tan2x2x×2-13-sinxx=limx02tan2x2x-1limx03-sinxx=2×1-13-1                   limx0sinxx=1 and limx0tanxx=1 =12

Hence, the correct answer is option (B).

Page No 244:

Question 67:

Let f(x) = x − [x]; ∈ R, then f12 is

(A) 32

(B) 1

(C) 0

(D) −1

Answer:

The derivative of greatest integer function is zero i.e., dxdx=0.
dfxdx=dx-xdxf'x=dxdx-dxdxf'x=1-0f'x=1f'12=1

Hence, the correct answer is option (B).

Page No 244:

Question 68:

If y=x+1x, then dydx at x = 1 is
 (A) 1

(B) 12

(C) 12

(D) 0

Answer:

y=x+1xy=x12+x-12
Differentiate y with respect to x.
dydx=12x12-1+-12x-12-1       By chain rule=12x-12x32

 dydxx=1=12-12=0

Hence, the correct answer is option D.

Page No 244:

Question 69:

If fx=x-42x, then f ′(1) is

(A) 54

(B) 45

(C) 1

(D) 0

Answer:

Use the quotient rule duvdx=vdudx-4dvdxv2 to differentiate f(x) with respect to x.
f'x=2xdx-4dx-x-4d2xdx2x2=2x-x-4×2×12x4x=2x-x-44xx=2x-x+44x32=x+44x32
f'1=1+44132=54
Hence, the correct answer is option (A).

Page No 244:

Question 70:

If y=1+1x21-1x2, then dydx is

(A) -4xx2-12

(B) -4xx2-1

(C) 1-x24x

(D) 4xx2-1

Answer:

y=1+1x21-1x2=x2+1x2x2-1x2=x2+1x2-1
Differentiate y with respect to x using the quotient rule.
dydx=x2-12x-x2+12xx2-12=2x3-2x-2x3-2xx2-12=-4xx2-12

Hence, the correct answer is option (A).

Page No 244:

Question 71:

If y=sinx+cosxsinx-cosx, then dydx at x = 0 is

(A) −2

(B) 0

(C) 12

(D) does not exist

Answer:

y=sinx+cosxsinx-cosx
Differentiate y with respect to x using the quotient rule.
dydx=sinx-cosxddxsinx+cosx-sinx+cosxddxsinx-cosxsinx-cosx2=sinx-cosxcosx-sinx-sinx+cosxcosx+sinxsinx-cosx2=-sinx-cosx2-sin2x+cosx2sinx-cosx2=-sin2x+cos2x-2sinxcosx+sin2x+cos2x+2sinxcosxsinx-cosx2=-1+1sinx-cosx2=-2sinx-cosx2
dydxx=0=-2sinx-cos02=-20-12=-2

Hence, the correct answer is option (A).



Page No 245:

Question 72:

If y=sinx+9cos x then dydx at x = 0 is

(A) cos 9

(B) sin 9

(C) 0

(D) 1

Answer:

Using the quotient rule to differentiate y with respect to x.
dydx=cosxdsinx+9dx-sinx+9dcosxdxcos2x=cosx cosx+9-sinx+9-sinxcos2x=cosx cosx+9+sinx sinx+9cos2x=cosx+9-xcos2x            cosx cosy + sinx siny=cosx-y=cos9cos2x
dydxx=0=cos9cos20=cos91=cos9
Hence, the correct answer is option (A).

Page No 245:

Question 73:

If fx=1+x+x22+...+x100100, then f ′(1) is equal to

(A) 1100

(B) 100

(C) does not exist

(D) 0

Answer:

fx=1+x+x22+...+x100100f'x=0+1+2x2+...+100x99100           =1+x+...+x99

Put x = 1 in f'(x).

f'1=1+1+...+1 100 times=100

Hence, the correct answer is option B.

Page No 245:

Question 74:

If fx=xn-anx-a for some constant 'a' then f ′(a) is

(A) 1

(B) 0

(C) does not exist

(D) 12

Answer:

fx=xn-anx-a
Using the quotient rule to differentiate f(x) with respect to x.
f'x=x-addxxn-an-xn-andx-adxx-a2=x-anxn-1-xn-an×1x-a2=nxn-naxn-1-xn+anx-a2
f'a=nan-na an-1-an+anx-a2=nan-nan02=00
Thus, f'(a) does not exist.

Hence, the correct answer is option C.

Page No 245:

Question 75:

If f(x) = x100 + x99 + ... + x + 1, then f ′(1) is equal to

(A) 5050

(B) 5049

(C) 5051

(D) 50051

Answer:

fx=x100+x99+...+x+1f'x=100x99+99x98+...+1+0

f'1=100+99+...+1=10022×100+100-1-1           Sn=n22a+n-1d=50200-99=50×101=5050

Hence, the correct answer is option (A).

Page No 245:

Question 76:

If f(x) = 1 − x + x2x3 ... − x99 + x100, then f ′(1) is equal to

(A) 150

(B) −50

(C) −150

(D) 50

Answer:

fx=1-x+x2-x3+...-x99+x100f'x=0-1+2x-3x2+...-99x98+100x99

f'x=-1+2-3+...-99+100=-1+3+5+...+99+2+4+...+100=-5022×1+50-12+5022×2+50-12         Sn=n22a+n-1d=-252+98+254+98=-25×100+25×102=-2500+2550=50

Hence, the correct answer is option (D).

Page No 245:

Question 77:

Fill in the blank.

If fx=tan xx-π, then limxπfx= _____________

Answer:

limxπfx=limxπtanxx-π=limxπ-tanπ-xx-π           tanπ-x=-tanx=limxπ-tanπ-x-π-x=limxπtanπ-xπ-x                 limx0tanxx=1 and xππ-x0=1

Page No 245:

Question 78:

Fill in the blank.

limx0sin mx cotx3=2, then m = _____________

Answer:

limx0sin mx cotx3=2limx0sinmxmx×mx×1tanx3=2limx0sinmxmx×mx×x3tanx3×x3=2limx0sinmxmx×limx0x3tanx3×limx0mxx3=21×1×3m=2          limx0sinxx=1 and limx0tanxx=1m=23m=233

Page No 245:

Question 79:

Fill in the blank.
If y=1+x1!+x22!+x33!+..., then dydx=_____________

Answer:

y=1+x1!+x22!+x33!+...
dydx=0+1+2x2!+3x23!+...=1+x1!+x22!+...=y

Page No 245:

Question 80:

Fill in the blank.
limx3+xx=_____________

Answer:

limx3+xx=limh03+h3+h=33=1



View NCERT Solutions for all chapters of Class 11