Physics Ncert Exemplar 2019 Solutions for Class 11 Science Physics Chapter 3 Motion In A Straight Line are provided here with simple step-by-step explanations. These solutions for Motion In A Straight Line are extremely popular among class 11 Science students for Physics Motion In A Straight Line Solutions come handy for quickly completing your homework and preparing for exams. All questions and answers from the Physics Ncert Exemplar 2019 Book of class 11 Science Physics Chapter 3 are provided here for you for free. You will also love the ad-free experience on Meritnation’s Physics Ncert Exemplar 2019 Solutions. All Physics Ncert Exemplar 2019 Solutions for class 11 Science Physics are prepared by experts and are 100% accurate.

Page No 13:

Question 3.1:

Among the four graphs (Fig. 3.1), there is only one graph for which average velocity over the time intervel (0, T ) can vanish for a suitably chosen T. Which one is it?

Answer:

Average velocity is zero when total displacement is zero. In graph shown in option (b) at time t = 0  and at time t = T (suitably chosen)  position is same so displacement is zero.


So average velocity from t = 0 to t = T is zero.
Hence, the correct answer is option (b). 



Page No 14:

Question 3.2:

A lift is coming from 8th floor and is just about to reach 4th floor. Taking ground floor as origin and positive direction upwards for all quantities, which one of the following is correct?
(a) x < 0, v < 0, a > 0
(b) x > 0, v < 0, a < 0
(c) x > 0, v < 0, a > 0
(d) x > 0, v > 0, a < 0

Answer:

Lift is moving downwards so x is negative i.e x < 0.
Here we can eliminate other options easily. Moreover velocity is downwards so v is also negative i.e v < 0.

Hence the correct answer is option (a)

Page No 14:

Question 3.3:

In one dimensional motion, instantaneous speed v satisfies 0 ≤ v < v0.
(a) The displacement in time T must always take non-negative values.
(b) The displacement x in time T satisfies – v0T < x < v0T.
(c) The acceleration is always a non-negative number.
(d) The motion has no turning points.

Answer:

Here instantaneous speed can vary from zero to v0So maximum distance v0T can be travelled in either positive or negative direction. Hence the displacement x in time T satisfies -v0T < x < v0T.
Hence the correct answer is option (b).

Page No 14:

Question 3.4:

A vehicle travels half the distance L with speed V1 and the other half with speed V2, then its average speed is
(a) V1+V22

(b) 2V1+V2V1+V2

(c) 2V1V2V1+V2

(d) LV1+V2V1V2

Answer:

Let time taken to travel first half and the second half distance of the journey be t1 and t2 respectively.

Time taken to travel first half distance, t1 = L/2v1 = L2v1Time taken to travel second half distance, t2 = L/2v2 = L2v2Total time = L2v1 + L2v2Since average speed = Total distancetotal time = LL2v1 + L2v2 =2v1v2v1+v2
Hence, the correct answer is option (c).

Page No 14:

Question 3.5:

The displacement of a particle is given by x = (t – 2)2 where x is in metres and t in seconds. The distance covered by the particle in first 4 seconds is
(a) 4 m
(b) 8 m
(c) 12 m
(d) 16 m

Answer:

Since x=t-22 then velocity, v=dxdt = 2t-2 and at  t=0, v=-4 m/s,               v=0 at t=2 s              v=4 m/s at t=4 s Also, Acceleration = dvdt= 2 m/s2 Now v-t graph of the particle is shown in the figure.Distance travelled = area OAD + area ABC                                = 12×4×2  + 12×4×2 = 8 m.



Hence the correct answer is option (b).

Page No 14:

Question 3.6:

At a metro station, a girl walks up a stationary escalator in time t1. If she remains stationary on the escalator, then the escalator take her up in time t2. The time taken by her to walk up on the moving escalator will be
(a) (t1 + t2) / 2
(b) t1t2 / (t2t1)
(c) t1t2 / (t2 + t1)
(d) t1t2

Answer:

Let the total distance covered be L.
So, velocity of girl = Lt1velocity of escalator = Lt2Effective velocity of girl on escalator  = Lt1 + Lt2if t is the time taken, then Lt=Lt1 + Lt2 t=t1t2t1+t2
Hence the correct answer is option (c).



Page No 15:

Question 3.7:

The variation of quantity A with quantity B, plotted in Fig. 3.2 describes the motion of a particle in a straight line.

(a) Quantity B may represent time.
(b) Quantity A is velocity if motion is uniform.
(c) Quantity A is displacement if motion is uniform.
(d) Quantity A is velocity if motion is uniformly accelerated.

Answer:

Quantity B may represent time. Thus option (a) is true.
If motion is uniform then velocity is constant. Thus option (b) is false.
If motion is uniform then displacement-time graph is straight line. Thus option (c) is true.
If motion is accelerated then velocity-time graph is a straight line with positive slope. Thus option (d) is true.

Hence the correct answer is option (a), (c) and (d)

Page No 15:

Question 3.8:

A graph of x versus t is shown in Fig. 3.3. Choose correct alternatives from below.

(a) The particle was released from rest at t = 0.
(b) At B, the acceleration a > 0.
(c) At C, the velocity and the acceleration vanish.
(d) Average velocity for the motion between A and D is positive.
(e) The speed at D exceeds that at E.

Answer:

At point A the graph is parallel to time axis, hence v = dxdt= 0. Hence we can say that the particle is starting from rest. Thus option (a) is correct.
At B slope is zero i.e., velocity is zero but particle changes direction i.e., acceleration is opposite to velocity i.e., negative. Thus option (b) is false.
At C, the graph changes slope, hence velocity also changes. As graph at C is almost parallel to time axis so velocity is zero and acceleration is also zero.
Since displacement is negative from A to D, average velocity is negative from A to D.  Thus option (d) is false.
Magnitude of slope at E is less than magnitude of slope at D.  Thus option (e) is true. 

Hence the correct options are (a), (c) and (e).

Page No 15:

Question 3.9:

For the one-dimensional motion, described by x = – sin t
(a) x (t) > 0 for all t > 0.
(b) v (t) > 0 for all t > 0.
(c) a (t) > 0 for all t > 0.
(d) v (t) lies between 0 and 2.

Answer:

Given equation,
x = t-sintSo, velocity, v=dxdt=1-costacceleration, a=dvdt= sintso, x>0 for all values of t>0.v can be zero if cost=1.a can be zero if sint=0.if t=0, v(0) = 1-1=0if t=π, v(π)=1-cosπ= 2

Hence the correct options are (a) and (d) only.

Page No 15:

Question 3.10:

A spring with one end attached to a mass and the other to a rigid support is stretched and released.
(a) Magnitude of acceleration, when just released is maximum.
(b) Magnitude of acceleration, when at equilibrium position, is maximum.
(c) Speed is maximum when mass is at equilibrium position.
(d) Magnitude of displacement is always maximum whenever speed is minimum.

Answer:

Spring force = −kx where x is the displacement from natural length of spring. So the force is maximum when x is maximum. Hence acceleration is maximum when block is just released. Hence option (a) is correct.
Total Energy is conserved i.e KE+PE=TE.
At equilibrium position, KE is max since PE = 12kx2 and x = 0. So speed is maximum at equilibrium position. Hence option (c) is correct.
If the fixed end of the spring is taken as origin than speed is zero when the displacement is maximum or minimum. Hence option (d) is false if fixed end of spring is taken as origin.

Hence the correct options are (a) and (c).



Page No 16:

Question 3.11:

A ball is bouncing elastically with a speed 1 m/s between walls of a railway compartment of size 10 m in a direction perpendicular to walls. The train is moving at a constant velocity of 10 m/s parallel to the direction of motion of the ball. As seen from the ground,
(a) the direction of motion of the ball changes every 10 seconds.
(b) speed of ball changes every 10 seconds.
(c) average speed of ball over any 20 second interval is fixed.
(d) the acceleration of ball is the same as from the train.

Answer:

Let vb and vt be the speed of ball and train with respect to ground.
Then speed of ball with respect to train is:      vbt=vb-vtvb=vbt+vtNow before collision, vb = 10+1 = +11 m/safter colision ,vb = -1+10 = +9 m/sIn both the cases speed of ball with respect to ground is positive i.e to the ground observer, the ball will never change is direction and will always appear to move in same direction with two different speeds after every 10 seconds.option a is false.Speed of the ball will change after every 10 s. option b is true.Since ball moves at 11 m/s for 10 s and then 9 m/s for next 10 s.Average speed of ball = total distancetotal time =11×10+9×1010+10 =20020=10 m/soption c is true.Since speed of train, ball and observer are constant, their accelerations are zero.option d is true.

Hence the correct options are (b), (c) and (d).

Page No 16:

Question 3.12:

Refer to the graphs in Fig 3.1. Match the following.

Graph   Characteristic
(a)  (i) has v > 0 and a < 0 throughout.
(b)  (ii) has x > 0 throughout and has a point with v = 0 and a point with a = 0.
(c)  (iii) has a point with zero displacement for t > 0.
(d)  (iv) has v < 0 and a > 0.

Answer:

For graph (a), at point P, = 0 at time> 0. so displacement is zero at one point for t > 0. 

So (a) matches with (iii).
For graph (b), dxdt is zero at point Q. So v = 0 at only one point. Acceleration i.e., d2xdt2 = 0 at point R. So, a = 0 at only one point.
Hence, (b) matches with (ii).

For graph (c) dxdt < 0 and d2xdt2 > 0. 
So (c) matches with (iv).

For graph (d) dxdt > 0 and d2xdt2< 0. 
so (d) matches with (i).





Hence the correct matching sequence is (a) (iii), (b) (ii), (c) iv, (d) (i).
 

Page No 16:

Question 3.13:

A uniformly moving cricket ball is turned back by hitting it with a bat for a very short time interval. Show the variation of its acceleration with time. (Take acceleration in the backward direction as positive).

Answer:

As the ball collide with bat, it will get deformed.



Impulsive forces will act on the ball. Impulsive forces will be restoring forces due to deformation.
Magnitude of restoring forces will be directly proportional to the deformation.
Hence force will be more when the deformation will be more.
So force will increase for half the duration of collision and force will decrease for next half.
Since a=Fm, the graph will look like:

Page No 16:

Question 3.14:

Give examples of a one-dimensional motion where:
(a) the particle moving along positive x-direction comes to rest periodically and moves forward.
(b) the particle moving along positive x-direction comes to rest periodically and moves backward.

Answer:

(a) Sine and Cosine functions are periodic. 
To make the particle move only in positive direction, 
We chose a function x = t − sin(t).
For x = t − sin(t) , speed i.e.,
dxdt  = 1 − cos(t
Now, for dxdt =0  
or, 1 − cos(t) = 0
or,  t =  0, 2π, 4π and so on.
So for x =  t − sin(t)  particle keep moving along positive x-direction and comes to rest periodically.

(b) x = sin (t)
If we say displacement x = sin(t),
then x = 0 for t = 0, π, 2π, 3π, 4π and so on.
But the particle will also go to the negative x axis when value of sin(t) is 0 to −1.
 
 
 

Page No 16:

Question 3.15:

Give example of a motion where x > 0, v < 0, a > 0 at a particular instant.

Answer:

Let us choose an equation,
x(t)=A+ B e-kt   where A > B, k > 0 are suitably chosen positive constants. v=dxdt=-Bk e-kt       (Which is negative)a=dvdt=Bk2 e-kt        (Which is positive)

Page No 16:

Question 3.16:

An object falling through a fluid is observed to have acceleration given by a = gbv where g = gravitational acceleration and b is constant. After a long time of release, it is observed to fall with constant speed. What must be the value of constant speed?

Answer:

If speed is constant,
Then acceleration, a = 0.
i.e g − bv = 0
or, v = gb
Hence, the value of constant speed is gb.



Page No 17:

Question 3.17:

A ball is dropped and its displacement vs time graph is as shown Fig. 3.4 (displacement x is from ground and all quantities are +ve upwards).

(a) Plot qualitatively velocity vs time graph.
(b) Plot qualitatively acceleration vs time graph.

Answer:

At point A, velocity is zero. At point B velocity, v = −gt.

At point C, velocity is −gt just before collision and smaller than +gt just after collision. 

At point E velocity becomes zero and motion continues.

The ball is released and is falling under gravity.

Acceleration is –g , except for the short time intervals in which the ball collides with ground, and when the impulsive force acts and produces a large acceleration.

Page No 17:

Question 3.18:

A particle executes the motion described by x(t) = x0 (1 – e–γt ); t ≥ 0, x0 > 0.
(a) Where does the particle start and with what velocity?
(b) Find maximum and minimum values of x(t), v(t), a(t).

Show that x(t) and a(t) increase with time and v(t) decreases with time.

Answer:

(a). Displacement,
 x(t)=x0 (1  eγt )at t=0, x=x0(1-1) =0x is maximum when t=. xmax=x0x is minimum when t=0, xmin= 0Similarly, velocity =dxdt=x0γeγtat, t=0, v=x0γ
So, the particle stats from position x = 0 with velocity xογ.

(b).
v is maximum when t=0. vmax=x0γv is minimum when t=. vmin=0Now, acceleration, a=dvdt=-x0γ2eγta is maximum when t=. amax=0a is minimum when t=0. amin=-x0γ2

Page No 17:

Question 3.19:

A bird is tossing (flying to and fro) between two cars moving towards each other on a straight road. One car has a speed of 18 km/h while the other has the speed of 27 km/h. The bird starts moving from first car towards the other and is moving with the speed of 36 km/h and when the two cars were separated by 36 km. What is the total distance covered by the bird? What is the total displacement of the bird?

Answer:

Relative speed of cars = 18+27 = 45 km/h,
time required to meet =  3645 = 0.8 h 
Thus, total distance covered by the bird = 36  × 0.8  = 28.8 km

Total displacement of the bird = distance travelled by first car = 18 × 0.8 = 14.4 Km

Page No 17:

Question 3.20:

A man runs across the roof-top of a tall building and jumps horizontally with the hope of landing on the roof of the next building which is of a lower height than the first. If his speed is 9 m/s, the (horizontal) distance between the two buildings is 10 m and the height difference is 9 m, will he be able to land on the next building ? (take g = 10 m/s2)

Answer:


Suppose that the fall of 9 m will take time t. Hence h=uyt-gt22      (uy=component of initial velocity in downward direction) Since uoy= 0, t=2hg=2×910= 1.34 s. In this time, the distance moved horizontally isR  = uxt = 9 m/s × 1.34 s = 12.06 m.  (ux=component of initial velocity in horizontal direction)
Since, the R > 10 m, so the man will safely land on the next building.

Page No 17:

Question 3.21:


A ball is dropped from a building of height 45 m. Simultaneously another ball is thrown up with a speed 40 m/s. Calculate the relative speed of the balls as a function of time.

Answer:

Both are free falling. Hence, there is no acceleration of one w.r.t. another. Therefore, relative speed remains constant (=40 m/s ).
 Velocity of ball dropped after time t,
vd​ = gt (downwards)    ...(1)
Velocity of ball thrown after time t,
vt = 40 − gt (upwards)     ...(2)
So, relative speed of ball,
​ vdt = vd + vt = gt + 40 - gt
      =
40 m/s.

Page No 17:

Question 3.22:

The velocity-displacement graph of a particle is shown in Fig. 3.5.

(a) Write the relation between v and x.
(b) Obtain the relation between acceleration and displacement and plot it.

Answer:


Using the eqn of straight line y=mx+c, we can writev-vo=(-voxo) x v=-voxo x + voNow acceleration is given by, a =dvdta=(-voxo)dxdt+0a = -voxo2x - (-vo2xo) The variation of a with x is shown in the figure. It is a straight line with a positive slope and a negative intercept.


 



Page No 18:

Question 3.23:

It is a common observation that rain clouds can be at about a kilometre altitude above the ground.
(a) If a rain drop falls from such a height freely under gravity, what will be its speed? Also calculate in km/h. ( g = 10 m/s2)
(b) A typical rain drop is about 4 mm diameter. Momentum is mass x speed in magnitude. Estimate its momentum when it hits ground.
(c) Estimate the time required to flatten the drop.
(d) Rate of change of momentum is force. Estimate how much force such a drop would exert on you.
(e) Estimate the order of magnitude force on umbrella. Typical lateral separation between two rain drops is 5 cm.

(Assume that umbrella is circular and has a diameter of 1 m and cloth is not pierced through !!)

Answer:

a Initial speed of drop, u=0.So, v2-02=2gh =2×10×1000=1002 m/s  510 km/hb Mass of drop = volume×density = 43πr3×1000 =43×227×42×10-3×103                                                                  3.4×10-5 kg.Momentum =  3.4×10-5×510  5×10-3 kgm/sc Time required to flatten the drop = Time taken by the drop to travel the distance equal to the diameter of the drop near the ground.Time, t= Dv=4×10-31002=0.028×10-3 s =2.8  μs 3  μsd Force = pt=4.7×10-32.8×10-5168 N.e Radius of the umbrella =12 m, area of umbrella =π1220.8 m2With average separation of 5 cm, number of drops that will fall almost simultaneously is = 0.85×10-22320.Net force = 320×168 =53760 N54000 N.
 

Page No 18:

Question 3.24:

A motor car moving at a speed of 72 km/h can not come to a stop in less than 3.0 s while for a truck this time interval is 5.0 s. On a highway the car is behind the truck both moving at 72 km/h. The truck gives a signal that it is going to stop at emergency. At what distance the car should be from the truck so that it does not bump onto (collide with) the truck. Human response time is 0.5s.

Answer:

Speed of the motor car,

72 km/h = 20 m/s Regardation of truck =20-05=4 ms-2 Required regardation of car =20-03 ms-2 Let the truck be at a distance s from the car when breaks are applied and t be the time taken to cover this distance.As human response time is 0.5 s, car will cover some distance with uniform velocity.So the time for retarded motion of car is (t-0.5) s.Velocity of car after time (t)=u-at =20-203t-0.5Velocity of truck after time t =20-4tTo avoid collision, 20-203(t-0.5)=20-4t t=1.25 s.Distance travelled by truck in time t  = ut-12at2=20×1.25-12×4×1.252=21.875 m.Distance travelled by car in time (t) = d1+d2where d1 is distance travelled by car without retardation in 0.5 s=20×0.5 mand, where d2 is distance travelled by car without retardation in 0.5 s= 201.25-0.5-122031.25-0.5So, Distance travelled by car in time t=23.125 mHence, to avoid the collision with the truck, the car must maintain a distance of 23.125-21.875=1.25 m from the truck.

Page No 18:

Question 3.25:

A monkey climbs up a slippery pole for 3 seconds and subsequently slips for 3 seconds. Its velocity at time t is given by v(t) = 2t (3 – t); 0 < t < 3 and v(t) = – (t – 3)(6 – t) for 3 < t < 6 s in m/s. It repeats this cycle till it reaches the height of 20 m.
(a) At what time is its velocity maximum?
(b) At what time is its average velocity maximum?
(c) At what time is its acceleration maximum in magnitude?
(d) How many cycles (counting fractions) are required to reach the top?

Answer:



a For maximum velocity, dvdt=0During climbing up the pole,ddt[2t(3-t)]=ddt(6t-2t2)=0or 6-4t=0 or t=32 s.So during climbing up the pole, max velocity = 6×1.5-252=4.5 m/s at time t=1.5 s.b Velocity is positive for first 3 seconds and negative for t=3 to t=6 s.So, monkey moves up during first 3 s and falls down during next 3 s. Displacement of monkey for first 3 s as a funtion of t, x(t) = vdtor  x(t)  =(6t-2t2)dt =3t2-23t3Average velocity of monkey at any time = vdtdt=3t2-23t3t=3t-23t2 For max avg velocity, ddt3t-23t2=0 or, t=2.25 s.c for 0<t<3, a = dvdt =ddt6t-2t2=6-4t. Acceleartiion is maximum at t=0 s. amax=6 m/s2.for 3<t<6, a =ddtt2-9t+18 =2t-9. Acceleration is max at t=6 s. amax=3 m/s2dDistance travelled in initial 3 seonds,s =036t-2t2dt =3t2-23t303= 27-18=9 mDistance travelled in next 3 seonds,s =36t2-9t+18dt =4.5 mHence the monkey moves 4.5 m up in first cycle. He will reach 9 m in second cycle and 13.5 m in third cycle.Now the monkey only needs to move 6.5 m to reach top. so he will cover that in next half cycle.So, the number of half cycle required are 3×2= 6.

Page No 18:

Question 3.26:

A man is standing on top of a building 100 m high. He throws two balls vertically, one at t = 0 and other after a time interval (less than 2 seconds). The later ball is thrown at a velocity of half the first. The vertical gap between first and second ball is +15 m at t = 2 s. The gap is found to remain constant. Calculate the velocity with which the balls were thrown and the exact time interval between their throw.

Answer:

If x1 and x2 be the displacement of the first and second ball respectively then,x1=v122g and x2=v222gNow, x1-x2= 15 (given)or  v122g-v222g=15 or 4v22g-v22g =15 ( since 2v1=v2 and let's say v2=v)or v2=15×2×g3 or v=10 m/sSo, v1= 20 m/s and v2= 10 m/s .Also, x1=v122g=20×2020×10=20 m and x2=20-15=5 m.If t2 is the time taken by ball 2 to cover displacement of 5 m then,x2=v2t-12gt22or 5=10t2-5t22 or t22-2t2+1=0 t2=1 s.Since t1= 2 s then time interval between the throws = 2-1= 1 s.



View NCERT Solutions for all chapters of Class 11