Select Board & Class
Using properties of determinants prove that -
(b+c)2....a2........a2
b2.....(c+a)2......b2 =2abc(a+b+c)3
c2.....c2.......(a+b)2
In this ques.. i just want to know tht after applying C1→ C1-C2, C2→ C2-C3
in this ques how can i take (a+b+c) common from C1 and C2.
if A is a square matrix of order 3, such that / adj.A / = 64 . then find / A' / .
Prove that
| (b+c)^2 a^2 a^2 |
| b^2 (c+a)^2 b^2 | = 2abc(a+b+c)^3
| c^2 c^2 (a+b)^2 |
If a,b,c, all positive ,are pth,qth and rth terms of G.P. , prove that determinant [ log a p 1
log b q 1 = 0
log c r 1 ]
if a is a square matrix of order 3 and / 3A / = k/A/ find value of k? pls fast plss
Prove that the following determinant is equal to (ab + bc + ca)3 :
-bc b2 + bc c2 + bc
a2 + ac -ac c2 + ac
a2 + ab b2 + ab -ab
A matrix of order 3X3 has determinant 5. What is the value of |3A|?
1. Using properties of determinants, prove the following:
| x y z
x2 y2 z2
x3 y3 z3 | = xyz(x - y)(y - z)(z - x) .
2. Using properties of determinants, prove the following :
| x x2 1+px3
y y2 1+py3
z z2 1+pz3 | = (1+ pxyz)(x - y)(y - z)(z - x) .
If det [ p b c
a q c = 0 then find (p/p-a) + (q/q-b) + (r/r-c)
a b r]
PROVE THAT THE DETERMINANT
b2+c2 ab ac
ab c2 +a2 bc
ac bc a2+b2
is equal to 4a2b2c2
state any short tricks to solve prob. on properties of determinant. and identify how to solve it by slight seeing????????
Using properties of determinants, solve the following for x :
x-2 2x-3 3x-4
x-4 2x-9 3x-16 =0
x-8 2x-27 3x-64
prove without expanding that the determinant equals 0b2c2 bc b-cc2a2 ca c-aa2b2 ab a-b
Difference between cramer's rule and Matrix method.....and when to use which one.....
for any 2*2 matrix A, if A(adjA) = [10 0] find A determinant....?
[0 10]
Please solve the following determinant based question | (y+z)^2 xy zx |
| xy (x+z)^2 yz | = 2xyz(x+y+z)^3 .
| xz yz (x+y)^2 |
Please give the answer fast !!
265 240 219
240 225 198
219 198 181
=0
Using properties of determinats, prove that
a2 2ab b2
b2 a2 2ab
2ab b2 a2
= (a3 + b3)2
1. A square matrix A, of order 3, has |A|=5, find |A adj. A|.
An amount of Rs. 10,000 is put into three investments at the rate of 10,12 and 15 per cent per annum. The combined income is Rs. 1,310 and the combined income of the first and the second investment is Rs. 190 short of the income from the third.
i) Represent the above situation by matrix equation and form the linear equation using multiplication.
ii) Is it possible to solve the system of equations so obtained using matrices?
What is the formula for Det[ adj( adj(A) ) ] and how do you derive it ?
Show that the elements along the main diagonal of a skew symmetric matrix are all zero.
Pls. answer
easy way to solve elementary row or column transformation
prove that the 3x3 determinant :
| 1+a2-b2 2ab -2b |
| 2ab 1-a2+b2 2a | = (1+a2+b2)3
| 2b -2a 1-a2-b2 |
how to solve determinant of 4x4 matrix?
If A is an invertible matrix of order 3 and |A|=5, then find |adj A|
if A is a square matrix of order 3 such that adj(2A) = k adj(A) , then wite the value of k..
prove that determinant of x x2 yz
y y2 zx = (x-y)(y-z)(z-x)(xy+yz+zx)
z z2 xy
A is a square matrix of order 3 and det. A = 7. Write the value of adj A.
Please give me any formula or method for calculating this problem.
if a,b,c are all positive and are pth,qth,rth terms of a G.P, then show that determinant
|log a p 1|
rn|logb q 1| =0r
| log c r 1|
prove that a+b+2c a b c b+c+2a b = 2( a+b+c)3 c a c+a+2b
Solve:
(i) x+y-2z =0 (ii)2x+3y+4z =0 (iii)3x+y+z =0 (iv) x+2y-3z = -4
2x+y-3z =0 x+y+z =0 x-4y+3z =02x+3y+2z =2
5x+4y-9z =0 2x-y+3z =0 2x+5y-2z =0 3x-3y-4z =11
If x + y + z = 0, prove that|xa yb zc| |a b c||yc za xb|= xyz |c a b||zb xc ya| |b c a|
Iwant the answer within 2 hours.Please!!!!!!
E.g: 9876543210, 01112345678
We will give you a call shortly, Thank You
Office hours: 9:00 am to 9:00 pm IST (7 days a week)
Syllabus
Using properties of determinants prove that -
(b+c)2....a2........a2
b2.....(c+a)2......b2 =2abc(a+b+c)3
c2.....c2.......(a+b)2
In this ques.. i just want to know tht after applying C1→ C1-C2, C2→ C2-C3
in this ques how can i take (a+b+c) common from C1 and C2.
if A is a square matrix of order 3, such that / adj.A / = 64 . then find / A' / .
Prove that
| (b+c)^2 a^2 a^2 |
| b^2 (c+a)^2 b^2 | = 2abc(a+b+c)^3
| c^2 c^2 (a+b)^2 |
If a,b,c, all positive ,are pth,qth and rth terms of G.P. , prove that determinant [ log a p 1
log b q 1 = 0
log c r 1 ]
if a is a square matrix of order 3 and / 3A / = k/A/ find value of k? pls fast plss
Prove that the following determinant is equal to (ab + bc + ca)3 :
-bc b2 + bc c2 + bc
a2 + ac -ac c2 + ac
a2 + ab b2 + ab -ab
A matrix of order 3X3 has determinant 5. What is the value of |3A|?
1. Using properties of determinants, prove the following:
| x y z
x2 y2 z2
x3 y3 z3 | = xyz(x - y)(y - z)(z - x) .
2. Using properties of determinants, prove the following :
| x x2 1+px3
y y2 1+py3
z z2 1+pz3 | = (1+ pxyz)(x - y)(y - z)(z - x) .
If det [ p b c
a q c = 0 then find (p/p-a) + (q/q-b) + (r/r-c)
a b r]
PROVE THAT THE DETERMINANT
b2+c2 ab ac
ab c2 +a2 bc
ac bc a2+b2
is equal to 4a2b2c2
state any short tricks to solve prob. on properties of determinant. and identify how to solve it by slight seeing????????
| b^2 +c^2 ab ac |
| ab c^2+a^2 bc |=4a^2b^2c^2
| ca cb a^2+ b^2|
Using properties of determinants, solve the following for x :
x-2 2x-3 3x-4
x-4 2x-9 3x-16 =0
x-8 2x-27 3x-64
prove without expanding that the determinant equals 0
b2c2 bc b-c
c2a2 ca c-a
a2b2 ab a-b
py+z y z
0 px+y py+z
= 0
where p is any real number
Difference between cramer's rule and Matrix method.....and when to use which one.....
|b+c a a |
| b c+a b |=4abc
| c c a+b |
for any 2*2 matrix A, if A(adjA) = [10 0] find A determinant....?
[0 10]
Please solve the following determinant based question | (y+z)^2 xy zx |
| xy (x+z)^2 yz | = 2xyz(x+y+z)^3 .
| xz yz (x+y)^2 |
Please give the answer fast !!
265 240 219
240 225 198
219 198 181
=0
Using properties of determinats, prove that
a2 2ab b2
b2 a2 2ab
2ab b2 a2
= (a3 + b3)2
px+y x y
py+z y z = 0
0 px+y py+z
1. A square matrix A, of order 3, has |A|=5, find |A adj. A|.
An amount of Rs. 10,000 is put into three investments at the rate of 10,12 and 15 per cent per annum. The combined income is Rs. 1,310 and the combined income of the first and the second investment is Rs. 190 short of the income from the third.
i) Represent the above situation by matrix equation and form the linear equation using multiplication.
ii) Is it possible to solve the system of equations so obtained using matrices?
What is the formula for Det[ adj( adj(A) ) ] and how do you derive it ?
Show that the elements along the main diagonal of a skew symmetric matrix are all zero.
Pls. answer
easy way to solve elementary row or column transformation
prove that the 3x3 determinant :
| 1+a2-b2 2ab -2b |
| 2ab 1-a2+b2 2a | = (1+a2+b2)3
| 2b -2a 1-a2-b2 |
how to solve determinant of 4x4 matrix?
If A is an invertible matrix of order 3 and |A|=5, then find |adj A|
subscriber. She proposes to increase the annual subscription charges and it is believed that for
every increase of Re 1, one subscriber will discontinue. What increase will bring maximum
income to her? Make appropriate assumptions in order to apply derivatives to reach the
solution. Write one important role of magazines in our lives.
a b-c c+b
a+c b c-a
a-b b+a c =(a+b+c)(a^2+b^2+c^2)
if A is a square matrix of order 3 such that adj(2A) = k adj(A) , then wite the value of k..
prove that determinant of x x2 yz
y y2 zx = (x-y)(y-z)(z-x)(xy+yz+zx)
z z2 xy
A is a square matrix of order 3 and det. A = 7. Write the value of adj A.
Please give me any formula or method for calculating this problem.
(a2+ b2)/c c c
a (b2+ c2)/a a = 4abc
b b ( c2 + a2)/b
if a,b,c are all positive and are pth,qth,rth terms of a G.P, then show that determinant
|log a p 1|
| log c r 1|
prove that a+b+2c a b
c b+c+2a b = 2( a+b+c)3
c a c+a+2b
Solve:
(i) x+y-2z =0 (ii)2x+3y+4z =0 (iii)3x+y+z =0 (iv) x+2y-3z = -4
2x+y-3z =0 x+y+z =0 x-4y+3z =02x+3y+2z =2
5x+4y-9z =0 2x-y+3z =0 2x+5y-2z =0 3x-3y-4z =11
A = [ 2 -3
3 4 ]
satisfies the equation x^2 - 6x + 17 = 0. Hence find A^-1.
If x + y + z = 0, prove that|xa yb zc| |a b c||yc za xb|= xyz |c a b||zb xc ya| |b c a|
Iwant the answer within 2 hours.Please!!!!!!
a2 2ab b2
b 2 a2 2ab = (a3+b3)2
2ab b 2 a2