Rd Sharma 2018 Solutions for Class 8 Math Chapter 21 Mensuration II (Volumes And Surface Areas Of A Cuboid And A Cube) are provided here with simple step-by-step explanations. These solutions for Mensuration II (Volumes And Surface Areas Of A Cuboid And A Cube) are extremely popular among Class 8 students for Math Mensuration II (Volumes And Surface Areas Of A Cuboid And A Cube) Solutions come handy for quickly completing your homework and preparing for exams. All questions and answers from the Rd Sharma 2018 Book of Class 8 Math Chapter 21 are provided here for you for free. You will also love the ad-free experience on Meritnation’s Rd Sharma 2018 Solutions. All Rd Sharma 2018 Solutions for class Class 8 Math are prepared by experts and are 100% accurate.

Page No 21.15:

Question 1:

Find the volume in cubic metre (cu. m) of each of the cuboids whose dimensions are:
(i) length = 12 m, breadth = 10 m, height = 4.5 cm
(ii) length = 4 m, breadth = 2.5 m, height = 50 cm.
(iii) length = 10 m, breadth = 25 dm, height = 50 cm.

Answer:

(i)Length=12 m Breadth=10 mHeight=4.5 m Volume of the cuboid=length×breadth×height=12×10×4.5=540 m3(ii)Length=4 mBreadth=2.5 mHeight=50 cm           =50100m   ( 1 m = 100 cm )           =0.5 m Volume of the cuboid=length×breadth×height=4×2.5×0.5=5 m3(iii)Length=10 mBreadth=25 dm             =2510m ( 10 dm= 1m)             =2.5 mHeight=25 cm=25100m=0.25 m Volume of the cuboid=length×breadth×height=10×2.5×0.25=6.25 m3

Page No 21.15:

Question 2:

Find the volume in cubic decimetre of each of the cubes whose side is
(i) 1.5 m
(ii) 75 cm
(iii) 2 dm 5 cm

Answer:

(i)Side of the cube=1.5 m                             =1.5×10 dm ( 1 m= 10 dm)                              =15 dm Volume of the cube=(side)3=(15)3=3375 dm3(ii)Side of the cube=75 cm                             =75×110 dm ( 1 dm=10 cm)                              =7.5 dm Volume of the cube=(side)3=(7.5)3=421.875 dm3(iii)Side of the cube =2 dm 5 cm                             =2 dm+5×110 dm  ( 1 dm=10 cm)                             =2 dm+0.5 dm                             =2.5 dm Volume of the cube=(side)3=(2.5)3=15.625 dm3

Page No 21.15:

Question 3:

How much clay is dug out in digging a well measuring 3 m by 2 m by 5 m?

Answer:

The measure of well is 3 m×2 m×5 m. Volume of the clay dug out=(3×2×5) m3=30 m3

Page No 21.15:

Question 4:

What will be the height of a cuboid of volume 168 m3, if the area of its base is 28 m2?

Answer:

Volume of the cuboid=168 m3 Area of its base=28 m2Let h m be the height of the cuboid.Now, we have the following:Area of the rectangular base=lenght×breadthVolume of the cuboid=lenght×breadth×heightVolume of the cuboid=(area of the base)×height168=28×hh=16828=6 m The height of the cuboid is 6 m.

Page No 21.15:

Question 5:

A tank is 8 m long, 6 m broad and 2 m high. How much water can it contain?

Answer:

Length of the tank=8 m Breadth=6 mHeight=2 m Its volume=length×breadth×height=(8×6×2) m3=96 m3We know that 1m3=1000 LNow, 96 m3=96×1000 L=96000 L The tank can store 96000 L of water.

Page No 21.15:

Question 6:

The capacity of a certain cuboidal tank is 50000 litres of water. Find the breadth of the tank, if its height and length are 10 m and 2.5 m respectively.

Answer:

Capacity of the cuboidal tank=50000 L1000 L=1 m3i.e., 50000 L=50×1000 litres=50 m3 The volume of the tank is 50 m3.Also, it is given that the length of the tank is 10 m.Height =2.5 mSuppose that the breadth of the tank is b m.Now, volume of the cuboid=length×breadth×height50=10×b×2.550=25×bb=5025=2 m The breadth of the tank is 2 m.

Page No 21.15:

Question 7:

A rectangular diesel tanker is 2 m long, 2 m wide and 40 cm deep. How many litres of diesel can it hold?

Answer:

Lenght of the rectangular diesel tanker=2 m Breadth=2 m Height=40 cm          =40×1100m   ( 1 m= 100 cm)           =0.4 mSo, volume of the tanker=lenght×breadth×height=2×2×0.4=1.6 m3We konw that 1 m3=1000 Li.e., 1.6 m3=1.6×1000 L=1600 L The tanker can hold 1600 L of diesel.

Page No 21.15:

Question 8:

The length , breadth and height of a room are 5 m, 4.5 m and 3 m, respectively. Find the volume of the air it contains.

Answer:

Length of the room=5 m Breadth=4.5 m Height=3 mNow, volume=length×breadth×height=5×4.5×3=67.5 m3 The volume of air in the room is 67.5 m3.

Page No 21.15:

Question 9:

A water tank is 3 m long, 2 m broad and 1 m deep. How many litres of water can it hold?

Answer:

Length of the water tank=3 mBreadth=2 mHeight=1 mVolume of the water tank=3×2×1=6 m3We know that 1 m3=1000 Li.e., 6 m3=6×1000 L=6000 L The water tank can hold 6000 L of water in it.

Page No 21.15:

Question 10:

How many planks each of which is 3 m long, 15 cm broad and 5 cm thick can be prepared from a wooden block 6 m long, 75 cm broad and 45 cm thick?

Answer:

Length of the wooden block=6 m                                     =6×100 cm   ( 1 m= 100 cm)                                     =600 cmBreadth of the block=75 cmHeight of the block=45 cmVolume of block=length×breadth×height                                 =600×75×45                                 =2025000 cm3Again, it is given that the length of a plank=3 m                                                             =3×100 cm  ( 1 m= 100 cm)                                                             =300 cmBreadth=15 cm, Height=5 cmVolume of the plank=length×breadth×height                                           =300×15×5=22500 cm3 The number of such planks=volume of the wooden blockvoume of a plank=2025000 cm322500 cm3=90

Page No 21.15:

Question 11:

How many bricks each of size 25 cm × 10 cm × 8 cm will be required to build a wall 5 m long, 3 m high and 16 cm thick, assuming that the volume of sand and cement used in the construction is negligible?

Answer:

Dimension of a brick=25 cm×10 cm×8 cmVolume of a brick=25 cm×10 cm×8 cm                                      =2000 cm3Also, it is given that the length of the wall is 5 m                                            =5×100 cm  (1 m= 100 cm)                                             =500 cm Height of the wall=3 m                    =3×100 cm   ( 1 m= 100 cm)                    =300 cmIt is 16 cm thick, i.e., breadth =16 cm Volume of the wall=length×breadth×height=500×300×16=2400000 cm3 The number of bricks needed to build the wall=volume of the wallvolume of a brick=2400000 cm32000 cm3=1200

Page No 21.15:

Question 12:

A village, having a population of 4000, requires 150 litres water per head per day. It has a tank which is 20 m long, 15 m broad and 6 m high. For how many days will the water of this tank last?

Answer:

A village has population of 4000 and every person needs 150 L of water a day. So, the total requirement of water in a day=4000×150 L=600000 LAlso, it is given that the length of the water tank is 20 m. Breadth=15 mHeight=6 mVolume of the tank=length×breadth×height=20×15×6=1800 m3Now, 1 m3=1000 L i.e.,  1800 m3=1800×1000 L=1800000 LThe tank has 1800000 L of water in it and the whole village need 600000 L per day. The water in the tank will last for 1800000600000 days, i.e., 3 days.

Page No 21.15:

Question 13:

A rectangular field is 70 m long and 60 m broad. A well of dimensions 14 m × 8 m × 6 m is dug outside the field and the earth dug-out from this well is spread evenly on the field. How much will the earth level rise?

Answer:

Dimension of the well = 14 m×8 m×6 m The volume of the dug-out earth =14×8×6=672 m3Now, we will spread this dug-out earth on a field whose length, breadth and height are 70 m, 60 m and h m, respectively. Volume of the dug-out earth =length×breadth×height=70×60×h672=4200×hh=6724200=0.16 mWe know that 1 m= 100 cm The earth level will rise by 0.16 m=0.16×100 cm=16 cm.

Page No 21.15:

Question 14:

A swimming pool is 250 m long and 130 m wide. 3250 cubic metres of water is pumped into it. Find the rise in the level of water.

Answer:

Length of the pool=250 m Breadth of the pool=130 mAlso, it is given that 3250 m3 of water is poured into it. i.e., volume of water in the pool=3250 m3Suppose that the height of the water level is h m.Then, volume of the water=length×breadth×height3250=250×130×h3250=32500×hh=325032500=0.1 m The water level in the tank will rise by 0.1 m.

Page No 21.15:

Question 15:

A beam 5 m long and 40 cm wide contains 0.6 cubic metre of wood. How thick is the beam?

Answer:

Length of the beam=5mBreadth=40 cm           =40×1100m   ( 100 cm=1 m)             =0.4 mSuppose that the height of the beam is h m.Also, it is given that the beam contains 0.6 cubic metre of wood. i.e., volume of the beam=0.6 m3Now, volume of the cuboidal beam=length×breadth×height0.6=5×0.4×h0.6=2×hh=0.62=0.3 m The beam is 0.3 m thick.

Page No 21.15:

Question 16:

The rainfall on a certain day was 6 cm. How many litres of water fell on 3 hectares of field on that day?

Answer:

The rainfall on a certain day=6 cm                              =6×1100m  ( 1 m = 100 cm)                              =0.06 mArea of the field=3 hectaresWe know that 1 hectare=10000 m2i.e., 3 hectares=3×10000 m2=30000 m2Thus, volume of rain water that fell in the field=(area of the field)×(height of rainfall)=30000×0.06=1800 m3Since 1 m3=1000 L, we have:1800 m3=1800×1000 L=1800000 L=18×100000 L=18×105 L On that day, 18×105 L of rain water fell on the field.

Page No 21.15:

Question 17:

An 8 m long cuboidal beam of wood when sliced produces four thousand 1 cm cubes and there is no wastage of wood in this process. If one edge of the beam is 0.5 m, find the third edge.

Answer:

Length of the wooden beam=8 m Width =0.5 m Suppose that the height of the beam is h m.Then, its volume =length×width×height=8×0.5×h=4×h m3Also, it produces 4000 cubes, each of edge 1 cm=1×1100m=0.01 m    (100 cm = 1 m)Volume of a cube=(side)3=(0.01)3=0.000001 m3 Volume of 4000 cubes=4000×0.000001=0.004 m3Since there is no wastage of wood in preparing cubes, the volume of the 4000 cubes will be equal to the volume of the cuboidal beam.i.e., Volume of the cuboidal beam=volume of 4000 cubes4×h=0.004h=0.0044=0.001 m The third edge of the cuboidal wooden beam is 0.001 m.

Page No 21.15:

Question 18:

The dimensions of a metal block are 2.25 m by 1.5 m by 27 cm. It is melted and recast into cubes, each of the side 45 cm. How many cubes are formed?

Answer:

Dimension of the metal block is 2.25 m×1.5 m×27 cm, i.e., 225 cm×150 cm×27 cm  ( 1 m=100 cm).Volume of the metal block=225×150×27=911250 cm3This metal block is melted and recast into cubes each of side 45 cm.Volume of a cube=(side)3=453=91125 cm3 The number of such cubes formed from the metal block=volume of the metal blockvolume of a metal cube=911250 cm391125 cm3=10

Page No 21.15:

Question 19:

A solid rectangular piece of iron measures 6 m by 6 cm by 2 cm. Find the weight of this piece, if 1 cm3 of iron weighs 8 gm.

Answer:

The dimensions of the an iron piece is 6 m×6 cm×2 cm, i.e., 600 cm×6 cm×2 cm  ( 1 m = 100 cm).Its volume=600×6×2=7200 cm3Now, 1 cm3=8 gmi.e., 7200 cm3=7200×8 gm=57600 gm Weight of the iron piece=57600 gm                           =57600×11000kg     ( 1 Kg= 1000 gm)                           =57.6 kg



Page No 21.16:

Question 20:

Fill in the blanks in each of the following so as to make the statement true:
(i) 1 m3 = .........cm3
(ii) 1 litre = ....... cubic decimetre
(iii) 1 kl = ....... m3
(iv) The volume of a cube of side 8 cm is ........
(v) The volume of a wooden cuboid of length 10 cm and breadth 8 cm is 4000 cm3. The height of the cuboid is ........ cm.
(vi) 1 cu.dm = ........ cu. mm
(vii) 1 cu. km = ........ cu. m
(viii) 1 litre = ........ cu. cm
(ix) 1 ml = ........ cu. cm
(x) 1 kl = ........ cu. dm = ........ cu. cm.

Answer:

(i)1 m3=1 m×1 m×1 m=100 cm×100 cm×100 cm       ( 1 m=100 cm)=1000000 cm3=106 cm3(ii)1 L=11000m3 =110001 m×1 m×1 m=11000×10 dm×10 dm×10 dm=1 dm3(iii)1 kL=1000 L       =1 m3  (1000 L=1 m3)(iv)Volume of a cube of side 8 cm=(side)3=83=512 cm3(v)Lenght of the wooden cuboid=10 cmBreadth= 8 cmIts volume=4000 cm3Suppose that the height of the cuboid is h cm.Then, volume of the cuboid=length×breadth×height4000=10×8×h 4000=80×h h=400080=50 cm(vi)1 cu dm=1 dm×1 dm×1 dm=100 mm×100 mm×100 mm=1000000 mm3=106 cu mm(vii)1 cu km=1 km×1 km×1 km=1000 m×1000 m×1000 m  ( 1 km=1000 m)=1000000000 m3=109 cu m(viii)1 L=11000m3 =11000×1 m×1 m×1 m=11000×100 cm×100 cm×100 cm    ( 1 m=100 cm)=1000 cm3=103 cu cm(ix)1 mL=11000×1 L=11000×11000m3 =11000×11000×1 m×1 m×1 m=11000×11000×100 cm×100 cm×100 cm   ( 1 m=100 cm)=1 cu cm(x)1 kL=1000 L=1000×11000m3=1 m3=1 m×1 m×1 m=10 dm×10 dm×10 dm     ( 1 m=10 dm)=1000 cu dm=1000×10 cm×10 cm×10 cm       ( 1 dm=10 cm)=1000000 cm3=106 cu cm



Page No 21.22:

Question 1:

Find the surface area of a cuboid whose
(i) length = 10 cm, breadth = 12 cm, height = 14 cm
(ii) length = 6 dm, breadth = 8 dm, height = 10 dm
(iii) length = 2 m, breadth = 4 m, height = 5 m
(iv) length = 3.2 m, breadth = 30 dm, height = 250 cm.

Answer:

(i)Dimension of the cuboid:Length=10 cm Breadth=12 cmHeight=14 cm Surface area of the cuboid=2×(length×breadth+breadth×height+length×height)=2×(10×12+12×14+10×14)=2×(120+168+140)=856 cm2(ii)Dimensions of the cuboid:Length=6 dm Breadth=8 dm Height=10 dm Surface area of the cuboid=2×(length×breadth+breadth×height+length×height)=2×(6×8+8×10+6×10)=2×(48+80+60)=376 dm2(iii)Dimensions of the cuboid:Length=2 m Breadth=4 m Height=5 m Surface area of the cuboid=2×(length×breadth+breadth×height+length×height)=2×(2×4+4×5+2×5)=2×(8+20+10)=76 m2(iv)Dimensions of the cuboid:Length=3.2m             =3.2×10 dm  (1 m=10 dm)             =32 dmBreadth=30 dm Height=250 cm                  =250×110dm   (10cm = 1 dm)                   =25 dmSurface area of the cuboid=2×(length×breadth+breadth×height+length×height)=2×(32×30+30×25+32×25)=2×(960+750+800)=5020 dm2

Page No 21.22:

Question 2:

Find the surface area of a cube whose edge is
(i) 1.2 m
(ii) 27 cm
(iii) 3 cm
(iv) 6 m
(v) 2.1 m

Answer:

(i) Edge of the a cube=1.2 m  Surface area of the cube=6×(side)2=6×(1.2)2=6×1.44=8.64 m2.(ii) Edge of the a cube=27 cm  Surface area of the cube=6×(side)2=6×(27)2=6×729=4374 cm2(iii) Edge of the a cube=3 cm  Surface area of the cube=6×(side)2=6×(3)2=6×9=54 cm2(iv) Edge of the a cube=6 m  Surface area of the cube=6×(side)2=6×(6)2=6×36=216 m2(v) Edge of the a cube=2.1 m  Surface area of the cube=6×(side)2=6×(2.1)2=6×4.41=26.46 m2

Page No 21.22:

Question 3:

A cuboidal box is 5 cm by 5 cm by 4 cm. Find its surface area.

Answer:

The dimensions of the cuboidal box are 5 cm×5 cm×4 cm. Surface area of the cuboidal box=2×(length×breadth+breadth×height+length×height)=2×(5×5+5×4+5×4)=2×(25+20+20)=130 cm2

Page No 21.22:

Question 4:

Find the surface area of a cube whose volume is
(i) 343 m3
(ii) 216 dm3

Answer:

(i)Volume of the given cube=343 m3 We know that volume of a cube=(side)3(side)3=343  i.e., side =3433=7 m Surface area of the cube=6×(side)2=6×(7)2=294 m2(ii)Volume of the given cube=216 dm3 We know that volume of a cube=(side)3(side)3=216 i.e., side=2163=6 dm Surface area of the cube=6×(side)2=6×(6)2=216 dm2

Page No 21.22:

Question 5:

Find the volume of a cube whose surface area is
(i) 96 cm2
(ii) 150 m2

Answer:

(i)Surface area of the given cube=96 cm2Surface area of a cube=6×(side)26×(side)2=96(side)2=966=16 i.e., side of the cube=16=4 cm Volume of the cube=(side)3=(4)3=64 cm3(ii)Surface area of the given cube=150 m2Surface area of a cube=6×(side)26×(side)2=150(side)2=1506=25 i.e., side of the cube=25=5 m Volume of the cube=(side)3=(5)3=125 m3

Page No 21.22:

Question 6:

The dimensions of a cuboid are in the ratio 5 : 3 : 1 and its total surface area is 414 m2. Find the dimensions.

Answer:

It is given that the sides of the cuboid are in the ratio 5:3:1. Suppose that its sides are x multiple of each other, then we have:Length=5x m Breadth=3x m Height=x m Also, total surface area of the cuboid=414 m2Surface area of the cuboid=2×(length×breadth+breadth×height+length×height)414=2×(5x×3x+3x×1x+5x×x)414=2×(15x2+3x2+5x2) 414=2×(23x2) 2×(23×x2)=414 (23×x2)=4142=207x2=20723=9x=9=3Therefore, we have the following:Lenght of the cuboid=5×x=5×3=15 m Breadth of the cuboid=3×x=3×3=9 m Height of the cuboid=x=1×3=3 m

Page No 21.22:

Question 7:

Find the area of the cardboard required to make a closed box of length 25 cm, 0.5 m and height 15 cm.

Answer:

Length of the box=25 cm Width of the box=0.5 m                   =0.5×100 cm  ( 1 m= 100 cm)                   =50 cm Height of the box=15 cm Surface area of the box=2×(length×breadth+breadth×height+length×height)=2×(25×50+50×15+25×15)=2×(1250+750+375)=4750 cm2

Page No 21.22:

Question 8:

Find the surface area of a wooden box whose shape is of a cube, and if the edge of the box is 12 cm.

Answer:

It is given that the side of the cubical wooden box is 12 cm.  Surface area of the cubical box=6×(side)2=6×(12)2=864 cm2

Page No 21.22:

Question 9:

The dimensions of an oil tin are 26 cm × 26 cm × 45 cm. Find the area of the tin sheet required for making 20 such tins. If 1 square metre of the tin sheet costs Rs 10, find the cost of tin sheet used for these 20 tins.

Answer:

Dimensions of the oil tin are 26 cm×26 cm×45 cm.So, the area of tin sheet required to make one tin=2×(length×breadth+breadth×height+length×height)=2×(26×26+26×45+26×45)=2×(676+1170+1170)=6032 cm2Now, area of the tin sheet required to make 20  such tins=20×surface area of one tin=20×6032=120640 cm2It can be observed that 120640 cm2=120640×1cm×1cm                                         =120640×1100m×1100m   ( 100 cm=1 m)                                          =12.0640 m2Also, it is given that the cost of 1 m2 of tin sheet=Rs 10  The cost of 12.0640 m2 of tin sheet=12.0640×10=Rs 120.6

Page No 21.22:

Question 10:

A cloassroom is 11 m long, 8 m wide and 5 m high. Find the sum of the areas of its floor and the four walls (including doors, windows, etc.)

Answer:

Lenght of the classroom=11 m Width=8 m Height=5 m We have to find the sum of the areas of its floor and the four walls (i.e., like an open box). The sum of areas of the floor and the four walls=(length×width)+2×(width×height+length×height)=(11×8)+2×(8×5+11×5)=88+2×(40+55)=88+190=278 m2

Page No 21.22:

Question 11:

A swimming pool is 20 m long 15 m wide and 3 m deep. Find the cost of repairing the floor and wall at the rate of Rs 25 per square metre.

Answer:

Length of the swimming pool=20 mBreadth=15 mHeight=3 mNow, surface area of the floor and all four walls of the pool=(length×breadth)+2×(breadth×height+length×height)=(20×15)+2×(15×3+20×3)=300+2×(45+60)=300+210=510 m2The cost of repairing the floor and the walls is Rs 25/m2.  The total cost of repairing 510 m2 area=510×25=Rs 12750

Page No 21.22:

Question 12:

The perimeter of a floor of a room is 30 m and its height is 3 m. Find the area of four walls of the room.

Answer:

Perimeter of the floor of the room=30 m Height of the oom=3 m Perimeter of a rectangle=2×(length+breadth)=30 m So, area of the four walls=2×(length×height+breadth×height)=2×(length+breadth)×height=30×3=90 m2

Page No 21.22:

Question 13:

Show that the product of the areas of the floor and two adjacent walls of a cuboid is the square of its volume.

Answer:

Suppose that the length, breadth and height of the cuboidal floor are l cm, b cm and h cm, respectively.Then, area of the floor=l×b cm2Area of the wall=b×h  cm2Area of its adjacent wall=l×h cm2Now, product of the areas of the floor and the two adjacent walls=(l×b)×(b×h)×(l×h)=l2×b2×h2=(l×b×h)2Also, volume of the cuboid=l×b×h cm2 Product of the areas of the floor and the two adjacent walls=(l×b×h)2=(volume)2

Page No 21.22:

Question 14:

The walls and ceiling of a room are to be plastered. The length, breadth and height of the room are 4.5 m, 3 m and 350 cm, respectively. Find the cost of plastering at the rate of Rs 8 per square metre.

Answer:

Length of a room=4.5 m Breadth=3 m Height=350 cm               =350100m    ( 1 m= 100 cm )                    =3.5 mSince only the walls and the ceiling of the room are to be plastered, we have:So, total area to be plastered=area of the ceiling+area of the walls=(length×breadth)+2×(length×height+breadth×height)=(4.5×3)+2×(4.5×3.5+3×3.5)=13.5+2×(15.75+10.5)=13.5+2×(26.25)=66 m2Again, cost of plastering an area of 1 m2=Rs 8  Total cost of plastering an area of 66 m2=66×8=Rs 528



Page No 21.23:

Question 15:

A cuboid has total surface area of 50 m2 and lateral surface area is 30 m2. Find the area of its base.

Answer:

Total sufrace area of the cuboid=50 m2 Its lateral surface area=30 m2Now, total surface area of the cuboid=2×(surface area of the base)+(surface area of the 4 walls)50=2×(surface area of the base)+(30)2×(surface area of the base)=50-30=20 Surface area of the base=202=10 m2

Page No 21.23:

Question 16:

A classroom is 7 m long, 6 m broad and 3.5 m high. Doors and windows occupy an area of 17 m2. What is the cost of white-washing the walls at the rate of Rs 1.50 per m2.

Answer:

Length of the classroom=7m Breadth of the classroom=6 mHeight of the classroom=3.5 mTotal surface area of the classroom to be whitewashed=areas of the 4 walls=2×(breadth×height+length×height)=2×(6×3.5+7×3.5)=2×(21+24.5)=91 m2Also, the doors and windows occupy 17 m2. So, the remaining area to be whitewashed=91-17=74 m2Given that the cost of whitewashing 1 m2 of wall=Rs 1.50 Total cost of whitewashing 74 m2 of area=74×1.50=Rs 111

Page No 21.23:

Question 17:

The central hall of a school is 80 m long and 8 m high. It has 10 doors each of size 3 m × 1.5 m and 10 windows each of size 1.5 m × 1 m. If the cost of white-washing the walls of the hall at the rate of Rs 1.20 per m2 is Rs 2385.60, fidn the breadth of the hall.

Answer:

Suppose that the breadth of the hall is b m.Lenght of the hall=80 mHeight of the hall=8 mTotal surface area of 4 walls including doors and windows=2×(length×height+breadth×height)=2×(80×8+b×8)=2×(640+8b)=1280+16b m2The walls have 10 doors each of dimensions 3 m×1.5 m. i.e., area of a door=3×1.5=4.5 m2  Area of 10 doors=10×4.5=45 m2Also, there are 10 windows each of dimensions 1.5 m×1 m.i.e., area of one window=1.5×1=1.5 m2 Area of 10 windows=10×1.5=15 m2Thus, total area to be whitwashed=(total area of 4 walls)-(areas of 10 doors+areas of 10 windows)=(1280+16b)-(45+15)=1280+16b-60=1220+16b m2It is given that the cost of whitewashing 1 m2 of area=Rs 1.20 Total cost of whitewashing the walls=(1220+16b)×1.20=1220×1.20+16b×1.20=1464+19.2bSince the total cost of whitewashing the walls is Rs 2385.60, we have:1464+19.2b=2385.6019.2b=2385.60-146419.2b=921.60b=921.6019.2=48 m The breadth of the central hall is 48 m.



Page No 21.30:

Question 1:

Find the length of the longest rod that can be placed in a room 12 m long, 9 m broad and 8 m high.

Answer:

Length of the room=12 mBreadth=9 m Height=8 mSince the room is cuboidal in shape, the length of the longest rod that can be placed in the room will be equal to the length of the diagonal between opposite vertices.Length of the diagonal of the floor using the Pythagorus theorem=l2+b2=(12)2+(9)2=144+81=225=15 mi.e., the length of the longest rod would be equal to the length of the diagonal of the right angle triangle of base 15 m and altitude 8 m.Similarly, using the Pythagorus theorem, length of the diagonal=152+82=225+64=17 m The length of the longest rod that can be placed in the room is 17 m.

Page No 21.30:

Question 2:

If V is the volume of a cuboid of dimensions a, b, c and S is its surface area, then prove that
1V=2S1a+1b+1c

Answer:

It is given that V is the volume of a cuboid of length=a, breadth=b and height=c. Also, S is surface area of cuboid.Then, V=a×b×cSurface area of the cuboid=2×(length×breadth+breadth×height+length×height)S=2×(a×b+b×c+a×c)Let us take the right-hand side of the equation to be proven. 2S(1a+1b+1c)=22×(a×b+b×c+a×c)×(1a+1b+1c)=1(a×b+b×c+a×c)×(1a+1b+1c)Now, multiplying the numerator and the denominator with a×b×c, we get:1(a×b+b×c+a×c)×(1a+1b+1c)×a×b×ca×b×c=1(a×b+b×c+a×c)×(a×b×ca+a×b×cb+a×b×cc)×1a×b×c=1(a×b+b×c+a×c)×(b×c+a×c+a×b)×1a×b×c=1(a×b+b×c+a×c)×(a×b+b×c+a×c)×1a×b×c=1a×b×c=1V 2S(1a+1b+1c)=1V

Page No 21.30:

Question 3:

The areas of three adjacent faces of a cuboid are x, y and z. If the volume is V, prove that V2 = xyz.

Answer:

The areas of three adjacent faces of a cuboid are x, y and z.Volume of the cuboid=VObserve that x=length×breadth y=breadth×height, z=length×heightSince volume of cuboid V=length×breadth×height, we have:V2=V×V=(length×breadth×height)×(length×breadth×height)=(length×breadth)×(breadth×height)×(length×height)=x×y×z=xyz V2=xyz

Page No 21.30:

Question 4:

A rectangular water reservoir contains 105 m3 of water. Find the depth of the water in the reservoir if its base measures 12 m by 3.5 m.

Answer:

Length of the rectangular water reservoir=12 m Breadth=3.5 m Suppose that the height of the reservoir=h mAlso, it contains 105 m3 of water, i.e., its volume=105 m3Volume of the cuboidal water reservoir=length×breadth×height105=12×3.5×h105=42×hh=10542=2.5 m The depth of the water in the reservoir is 2.5 m.

Page No 21.30:

Question 5:

Cubes A, B, C having edges 18 cm, 24 cm and 30 cm respectively are melted and moulded into a new cube D. Find the edge of the bigger cube D.

Answer:

We have the following:Length of the edge of cube A=18 cmLength of the edge of cube B=24 cm Length of the edge of cube C=30 cmThe given cubes are melted and moulded into a new cube D. Hence, volume of cube D=volume of cube A+volume of cube B+volume of cube C=(side of cube A)3+(side of cube B)3+(side of cube C)3=183+243+303=5832+13824+27000=46656 cm3Suppose that the edge of the new cube D=xx3=46656x=466563=36 cm The edge of the bigger cube D is 36 cm.

Page No 21.30:

Question 6:

The breadth of a room is twice its height, one half of its length and the volume of the room is 512 cu. dm. Find its dimensions.

Answer:

Suppose that the breadth of the room=x dmSince breadth is twice the height, breadth=2×heightSo, height of the room=breadth2=x2Also, it is given that the breadth is half the length.So, breadth=12×lengthi.e., length=2×breadth=2×xSince volume of the room=512 cu dm, we have:Volume of a cuboid=length×breadth×height512=2×x×x×x2512=x3x=5123=8 dmHence, length of the room=2×x=2×8=16 dm Breadth of the room=x=8 dmHeight of the the room=x2=82=4 dm

Page No 21.30:

Question 7:

A closed iron tank 12 m long, 9 m wide and 4 m deep is to be made. Determine the cost of iron sheet used at the rate of Rs 5 per metre sheet, sheet being 2 m wide.

Answer:

A closed iron tank of dimensions 12 m long, 9 m wide and 4 m deep is to be made. Surface area of the cuboidal tank=2×(length×breadth+breadth×height+length×height)=2×(12×9+9×4+12×4)=2×(108+36+48)=384 m2Also, the cost of an iron sheet is Rs 5 per metre and the sheet is 2 metres wide. i.e., area of a sheet=1 m×2 m=2 m2So, the cost of 2 m2 of iron sheet=Rs 5i.e., the cost of 1 m2 of iron sheet=Rs 52 Cost of 384 m2 of iron sheet=384×52=Rs 960

Page No 21.30:

Question 8:

A tank open at the top is made of iron sheet 4 m wide. If the dimensions of the tank are 12 m × 8 m × 6 m, find the cost of iron sheet at Rs 17.50 per metre.

Answer:

An open iron tank of dimensions 12 m×8 m×6 m is to be made.Surface area of the open tank=(area of the base)+(total area of the 4 walls)=(12×8)+2×(8×6+12×6)=(96)+2×(48+72)=336 m2Also, it is given that the cost of the iron sheet that is 4 m wide is Rs 17.50 per metre. i.e., the area of the iron sheet=1 m×4 m=4 m2 So, the cost of 4 m2 of iron sheet=Rs 17.50  The cost of iron sheet required to an iron tank of surface area 336 m2 =336×17.504=Rs 1470

Page No 21.30:

Question 9:

Three equal cubes are placed adjacently in a row. Find the ratio of total surface area of the new cuboid to that of the sum of the surface areas of the three cubes.

Answer:

Suppose that the side of the cube= x cmSurface area of the cube=6×(side)2=6×x2=6x2 cm2i.e., the sum of the surface areas of three such cubes=6x2+6x2+6x2=18 x2 cm2Now, these three cubes area placed together to form a cuboid. Then the length of the new cuboid will be 3 times the edge of the cube=3×x=3x cmBreadth of the cuboid=x cmHeight of the cuboid=x cm Total surface area of the cuboid=2×(length×breadth+breadth×height+length×height)=2×(3x×x+x×x+3x×x)=2×(3x2+x2+3x2)=2×(7x2)=14x2 cm2

i.e., 
the ratio ofthe total surface area cuboid to the sum of the surface areas of the three cubes = 14 x2 cm2 : 18 x2 cm2 = 7:9 
Hence, the ratio is 7:9.

Page No 21.30:

Question 10:

The dimensions of a room are 12.5 m by 9 m by 7 m. There are 2 doors and 4 windows in the room; each door measures 2.5 m by 1.2 m and each window 1.5 m by 1 m. Find the cost of painting the walls at Rs 3.50 per square metre.

Answer:

The dimensions of the room are 12.5 m×9 m×7 m.Hence, the surface area of walls=2×(length×height+breadth×height)=2×(12.5×7+9×7)=301 m2Also, there are 2 doors and 4 windows in the room. The dimensions of door are 2.5 m×1.2 m. i.e., area of a door=2.5×1.2=3 m2 Total area of 2 doors=2×3=6 m2 The dimensions of a window are 1.5 m×1 m. i.e., area of a window=1.5×1=1.5 m2 Total area of 4 windows=4×1.5=6 m2Hence, the total area to be painted=301-(6+6)=289 m2The rate of painting 1 m2 of wall=Rs 3.50 The total cost of painting 289 m2 of wall=Rs 289×3.50=Rs 1011.50

Page No 21.30:

Question 11:

A field is 150 m long and 100 m wide. A plot (outside the field) 50 m long and 30 m wide is dug to a depth of 8 m and the earth taken out from the plot is spread evenly in the field. By how much is the level of field raised?

Answer:

The dimensions of the plot dug outside the field are 50 m×30 m×8 m.Hence, volume of the earth dug-out from the plot=50×30×8=12000 m3Suppose that the level of the earth rises by h m.When we spread this dug-out earth on the field of length 150 m, breadth 100 m and height h m, we have:Volume of earth dug-out=150×100×h12000=15000×hh=1200015000=0.8 m h=80 cm    ( 1 m=100 cm)∴ The level of the field will rise by  80 cm.

Page No 21.30:

Question 12:

Two cubes, each of volume 512 cm3 are joined end to end. Find the surface area of the resulting cuboid.

Answer:

Two cubes each of volume 512 cm3 are joined end to end. Now, volume of a cube=(side)3512=(side)3Side of the cube=5123=8 cm If the cubes area joined side by side, then the length of the resulting cuboid is 2×8 cm=16 cm. Breadth=8 cm Height=8 cm Surface area of the cuboid=2×(length×breadth+breadth×height+length×height)=2×(16×8+8×8+16×8)=2×(128+64+128)=640 cm2

Page No 21.30:

Question 13:

Three cubes whose edges measure 3 cm, 4 cm, and 5 cm respectively are melted to form a new cube. Find the surface area of the new cube formed.

Answer:

Three cubes of edges 3 cm, 4 cm and 5 cm are melted and molded to form a new cube.i.e., volume of the new cube=sum of the volumes of the three cubes=(3)3+(4)3+(5)3               =27+64+125=216 cm3We know that volume of a cube=(side)3216=(side)3Side of the new cube=2163=6 cm Surface area of the new cube=6×(side)2=6×(6)2=216 cm2

Page No 21.30:

Question 14:

The cost of preparing the walls of a room 12 m long at the rate of Rs 1.35 per square metre is Rs 340.20 and the cost of matting the floor at 85 paise per square metre is Rs 91.80. Find the height of the room.

Answer:

The cost of preparing 4 walls of a room whose length is 12 m is Rs 340.20 at a rate of Rs 1.35/m2. Area of the four walls of the room=total costrate=Rs 340.20Rs 1.35=252 m2Also, the cost of matting the floor at 85 paise/m2 is Rs 91.80. Area of the floor=total costrate=Rs 91.80Rs 0.85=108 m2Hence, breadth of the room=area of the floorlength=10812=9 mSuppose that the height of the room is h m.Then, we have:Area of four walls=2×(length×height+breadth×height)252=2×(12×h+9×h)252=2×(21h)21h=2522=126h=12621=6 m The height of the room is 6 m.

Page No 21.30:

Question 15:

The length of a hall is 18 m and the width 12 m. The sum of the areas of the floor and the flat roof is equal to the sum of the areas of the four walls. Find the height of the wall.

Answer:

Length of the hall=18 mIts width=12 m Suppose that the height of the wall is h m.  Also, sum of the areas of the floor and the flat roof=sum of the areas of the four walls 2×(length×breadth)=2×(length+breadth)×height2×(18×12)=2×(18+12)×h432=60×hh=43260=7.2 m The height of wall is 7.2 m.

Page No 21.30:

Question 16:

A metal cube of edge 12 cm is melted and formed into three smaller cubes. If the edges of the two smaller cubes are 6 cm and 8 cm, find the edge of the third smaller cube.

Answer:

Let the edge of the third cube be x cm.Three small cubes are formed by melting the cube of edge 12 cm. Edges of two small cubes are 6 cm and 8 cm.Now, volume of a cube=(side)3Volume of the big cube=sum of the volumes of the three small cubes(12)3=(6)3+(8)3+(x)3            1728=216+512+x3x3=1728-728=1000x=10003=10 cm The edge of the third cube is 10 cm.

Page No 21.30:

Question 17:

The dimensions of a cinema hall are 100 m, 50 m and 18 m. How many persons can sit in the hall, if each person requires 150 m3 of air?

Answer:

The dimensions of a cinema hall are 100 m×50 m×18 m. i.e., volume of air in the cinema hall=100×50×18=90000 m3It is given that each person requires 150 m3 of air. The number of persons that can sit in the cinema hall=volume of air in hallvolume of air required by 1 person=90000150=600

Page No 21.30:

Question 18:

The external dimensions of a closed wooden box are 48 cm, 36 cm, 30 cm. The box is made of 1.5 cm thick wood. How many bricks of size 6 cm × 3 cm × 0.75 cm can be put in this box?

Answer:

The outer dimensions of the closed wooden box are 48 cm×36 cm×30 cm.Also, the box is made of a 1.5 cm thick wood, so the inner dimensions of the box will be  (2×1.5=3)cm less.i.e., the inner dimensions of the box are 45 cm×33 cm×27 cm Volume of the box=45×33×27=40095 cm3Also, the dimensions of a brick are 6 cm×3 cm×0.75 cm.Volume of a brick=6×3×0.75=13.5 cm3  The number of bricks that can be put in the box=4009513.5=2970



Page No 21.31:

Question 19:

The dimensions of a rectangular box are in the ratio of 2 : 3 : 4 and the difference between the cost of covering it with sheet of paper at the rates of Rs 8 and Rs 9.50 per m2 is Rs. 1248. Find the dimensions of the box.

Answer:

Suppose that the dimensions be x multiple of each other.The dimensions are in the ratio 2:3:4. Hence, length=2x mBreadth=3x mHeight=4x mSo, total surface area of the rectangular box=2×(length×breadth+breadth×height+length×height)=2×(2x×3x+3x×4x+2x×4x)=2×(6x2+12x2+8x2)=2×(26x2)=52x2 m2Also, the cost of covering the box with paper at the rate Rs 8/m2 and Rs 9.50/m2 is Rs 1248.Here, the total cost of covering the box at a rate of Rs 8/m2=8×52x2=Rs 416x2And the total cost of covering the box at a rate of Rs 9.50/m2=9.50×52x2=Rs 494x2Now, total cost of covering the box at the rate Rs 9.50/m2-total cost of covering the box at the rate Rs 8/m2=1248494x2-416x2=124878x2=1248x2=124878=16x=16=4Hence, length of the rectangular box=2×x=2×4=8 m Breadth=3×x=3×4=12 m Height=4×x=4×4=16 m



Page No 21.8:

Question 1:

Find the volume of a cuboid whose
(i) length = 12 cm, breadth = 8 cm, height = 6 cm
(ii) length =1.2 m, breadth = 30 cm, height = 15 cm
(iii) length = 15 cm, breadth = 2.5 dm, height = 8 cm.

Answer:

(i)In the given cuboid, we have:length=12 cm,  breadth=8 cm and height=6 cm Volume of the cuboid = length×breadth×height =12×8×6 =576 cm 3(ii)In the given cuboid, we have:length=1.2 m=1.2×100 cm  (1 m = 100 cm)=120 cmbreadth=30 cmheight=15 cm Volume of the cuboid = length×breadth×height=120×30×15=54000 cm  3(iii)In the given cuboid, we have:length=1.5 dm =1.5×10   (1 dm = 10 cm)  = 15 cmbreadth=2.5 dm=2.5×10 cm=25 cmheight=8 cmVolume of cuboid = length×breadth×height=15×25×8=3000 cm  3

Page No 21.8:

Question 2:

Find the volume of a cube whose side is
(i) 4 cm
(ii) 8 cm
(iii) 1.5 dm
(iv) 1.2 m
(v) 25 mm

Answer:

(i)The side of the given cube is 4 cm.∴ Volume of the cube=(side)3=(4)3=64 cm3(ii)The side of the given cube is 8 cm.∴ Volume of the cube=(side)3 = (8)3 = 512 cm3(iii)The side of the given cube = 1.5 dm=1.5×10 cm=15 cm∴ Volume of the cube=(side)3=(15)3=3375 cm3(iv)The side of the given cube = 1.2 m=1.2×100 cm=120 cm∴ Volume of the cube=(side)3=(120)3=1728000 cm3(v)The side of the given cube = 25 mm = 2510  cm=2.5 cm∴ Volume of the cube=(side)3=(2.5)3=15.625 cm3

Page No 21.8:

Question 3:

Find the height of a cuboid of volume 100 cm3, whose length and breadth are 5 cm and 4 cm respectively.

Answer:

Let us suppose that the height of the cuboid is h cm.Given:Volume of the cuboid= 100 cm3Length=5 cmBreadth=4 cmNow, volume of the cuboid=length×breadth×height100=5×4×h100=20×h h=10020=5 cm

Page No 21.8:

Question 4:

A cuboidal vessel is 10 cm long and 5 cm wide. How high it must be made to hold 300 cm3 of a liquid?

Answer:

Let h cm be the height of the cuboidal vessel.Given:Length =10 cmBreadth=5 cmVolume of the vessel=300 cm3Now, volume of a cuboid=length×breadth×height300=10×5×h300=50×h h=30050=6 cm

Page No 21.8:

Question 5:

A milk container is 8 cm long and 50 cm wide. What should be its height so that it can hold 4 litres of milk?

Answer:

Length of the cuboidal milk container=8 cm Breadth=50 cmLet h cm be the height of the container.It is given that the container can hold 4 L of milk.i.e., volume=4 L=4×1000 cm3=4000 cm3  ( 1 L=1000 cm3)Now, volume of the container=length×breadth×height4000=8×50×h4000=400×hh=4000400=10 cm The height of the milk container is 10 cm.

Page No 21.8:

Question 6:

A cuboidal wooden block contains 36 cm3 wood. If it be 4 cm long and 3 cm wide, find its height.

Answer:

A cuboidal wooden block contains 36 cm3 of wood.i.e., volume=36 cm3Length of the block=4 cmBreadth of block=3 cmSuppose that the height of the block is h cmNow, volume of a cuboid=lenght×breadth×height36=4×3×h36=12×hh=3612=3 cm The height of the wooden block is 3 cm.

Page No 21.8:

Question 7:

What will happen to the volume of a cube, if its edge is
(i) halved
(ii) trebled?

Answer:

(i)Suppose that the length of the edge of the cube is x. Then, volume of the cube=(side)3=x3When the length of the side is halved, the length of the new edge becomes x2.Now, volume of the new cube=(side)3=x23=x323=x38=18×x3It means that if the edge of a cube is halved, its new volume will be 18 times the initial volume.(ii)Suppose that the length of the edge of the cube is x. Then, volume of the cube=(side)3=x3When the length of the side is trebled, the length of the new edge becomes 3×x.Now, volume of the new cube=(side)3=(3×x)3=33×x3=27×x3Thus, if the edge of a cube is trebled, its new volume will be 27 times the initial volume.

Page No 21.8:

Question 8:

What will happen to the volume of a cuboid if its:
(i) Length is doubled, height is same and breadth is halved?
(ii) Length is doubled, height is doubled and breadth is sama?

Answer:

(i)Suppose that the length, breadth and height of the cuboid are l, b and h, respectively.Then, volume =l×b×hWhen its length is doubled, its length becomes 2×l.When its breadth is halved, its length becomes b2.The height h remains the same.Now, volume of the new cuboid=length×breadth×height=2×l×b2×h=l×b×h It can be observed that the new volume is the same as the initial volume. So, there is no change in volume. (ii)Suppose that the length, breadth and height of the cuboid are l, b and h, respectively.Then, volume =l×b×hWhen its length is doubled, its length becomes 2×l.When its height is double, it becomes 2×h.The breadth b remains the same. Now, volume of the new cuboid=length×breadth×height=2×l×b×2×h=4×l×b×h It can be observed that the volume of the new cuboid is four times the initial volume.

Page No 21.8:

Question 9:

Three cuboids of dimensions 5 cm × 6 cm × 7cm, 4cm × 7cm × 8 cm and 2 cm × 3 cm × 13 cm are melted and a cube is made. Find the side of cube.

Answer:

The dimensions of the three cuboids are 5 cm×6 cm×7 cm,  4 cm×7 cm×8 cm and  2 cm×3 cm×13 cm.Now, a new cube is formed by melting the given cuboids. Voulume of the cube=sum of the volumes of the cuboids=(5 cm×6 cm×7 cm)+(4 cm×7 cm×8 cm)+(2 cm×3 cm×13 cm)=(210 cm3)+(224 cm3)+(78 cm3)=512 cm3Since volume of a cube=(side)3, we have:512=(side)3(side)=5123=8 cm The side of the new cube is 8 cm.

Page No 21.8:

Question 10:

Find the weight of solid rectangular iron piece of size 50 cm × 40 cm × 10cm, if 1 cm3 of iron weighs 8 gm.

Answer:

The dimension of the rectangular piece of iron is 50 cm×40 cm×10 cm.i.e., volume = 50 cm×40 cm×10 cm=20000 cm3It is given that the weight of 1 cm3 of iron is 8 gm.  The weight of the given piece of iron =20000×8 gm                                                                 =160000 gm                                                                 =160×1000 gm                                                                  =160 kg ( 1 kg=1000 gm)

Page No 21.8:

Question 11:

How many wooden cubical blocks of side 25 cm can be cut from a log of wood of size 3 m by 75 cm by 50 cm, assuming that there is no wastage?

Answer:

The dimension of the log of wood is 3 m×75 cm×50 cm, i.e., 300 cm×75 cm×50 cm ( 3 m= 100 cm). Volume =300 cm×75 cm×50 cm=1125000 cm3It is given that the side of each cubical block of wood is of 25 cm.Now, volume of one cubical block=(side)3                              =253                              =15625 cm3 The required number of cubical blocks=volume of the wood logvolume of one cubical block                                               =1125000 cm315625 cm3                                               =72

Page No 21.8:

Question 12:

A cuboidal block of silver is 9 cm long, 4 cm broad and 3.5 cm in height. From it, beads of volume 1.5 cm3 each are to be made. Find the number of beads that can be made from the block.

Answer:

Length of the cuboidal block of silver=9 cm Breadth=4 cm Height=3.5 cmNow, volume of the cuboidal block=length×breadth×height                                           =9×4×3.5                                            =126 cm3 The required number of beads of volume 1.5 cm3 that can be made from the block=volume of the silver blockvolume of one bead                                                                                                               =126 cm31.5 cm3                                                                                                               =84 

Page No 21.8:

Question 13:

Find the number of cuboidal boxes measuring 2 cm by 3 cm by 10 cm which can be stored in a carton whose dimensions are 40 cm, 36 cm and 24 cm.

Answer:

Dimension of one cuboidal box = 2 cm×3 cm×10 cmVolume =(2×3×10) cm3=60 cm3It is given that the dimension of a carton is 40 cm×36 cm×24 cm, where the boxes can be stored. Volume of the carton=(40×36×24) cm3=34560 cm3 The required number of cuboidal boxes that can be stored in the carton=volume of the cartonvolume of one cuboidal box=34560 cm360 cm3=576

Page No 21.8:

Question 14:

A cuboidal block of solid iron has dimensions 50 cm, 45 cm and 34 cm. How many cuboids of size 5 cm by 3 cm by 2 cm can be obtained from this block? Assume cutting causes no wastage.

Answer:

Dimension of the cuboidal iron block = 50 cm×45 cm×34 cmVolume of the iron block=length×breadth×height=(50×45×34) cm3=76500 cm3It is given that the dimension of one small cuboids is 5cm×3 cm×2 cm.Volume of one small cuboid=length×breadth×height=(5×3×2) cm3=30 cm3 The required number of small cuboids that can be obtained from the iron block=volume of the iron blockvolume of one small cuboid=76500 cm330 cm3=2550

Page No 21.8:

Question 15:

A cube A has side thrice as long as that of cube B. What is the ratio of the volume of cube A to that of cube B?

Answer:

Suppose that the length of the side of cube B is l cm.Then, the length of the side of cube A is 3×l cm.Now, ratio=volume of cube Avolume of cube B=(3×l)3 cm3(l)3 cm3=33×l3l3=271 The ratio of the volume of cube A to the volume of cube B is 27:1.



Page No 21.9:

Question 16:

An ice-cream brick measures 20 cm by 10 cm by 7 cm. How many such bricks can be stored in deep fridge whose inner dimensions are 100 cm by 50 cm by 42 cm?

Answer:

Dimension of an ice cream brick = 20 cm×10 cm×7 cmIts volume=length×breadth×height=(20×10×7) cm3=1400 cm3Also, it is given that the inner dimension of the deep fridge is 100 cm×50 cm×42 cm.Its volume=length×breadth×height=(100×50×42) cm3=210000 cm3 The number of ice cream bricks that can be stored in the fridge=volume of the fridgevolume of an ice cream brick=210000 cm31400 cm3=150

Page No 21.9:

Question 17:

Suppose that there are two cubes, having edges 2 cm and 4 cm, respectively. Find the volumes V1 and V2 of the cubes and compare them.

Answer:

The edges of the two cubes are 2 cm and 4 cm.Volume of the cube of side 2 cm, V1=(side)3=(2)3=8 cm3Volume of the cube of side 4 cm, V2=(side)3=(4)3=64 cm3We observe the following:V2=64 cm3=8×8 cm3=8×V1 V2=8V1

Page No 21.9:

Question 18:

A tea-packet measures 10 cm × 6 cm × 4 cm. How many such tea-packets can be placed in a cardboard box of dimensions 50 cm × 30 cm × 0.2 m?

Answer:

Dimension of a tea packet is 10 cm×6 cm×4 cm.Volume of a tea packet=length×breadth×height=(10×6×4) cm3=240 cm3Also, it is given that the dimension of the cardboard box is 50 cm×30 cm×0.2 m, i.e., 50 cm×30 cm×20 cm  ( 1 m=100 cm)Volume of the cardboard box=length×breadth×height=(50×30×20) cm3=30000 cm3 The number of tea packets that can be placed inside the cardboard box=volume of the boxvolume of a tea packet=30000 cm3240 cm3=125

Page No 21.9:

Question 19:

The weight of a metal block of size 5 cm by 4 cm by 3 cm is 1 kg. Find the weight of a block of the same metal of size 15 cm by 8 cm by 3 cm.

Answer:

The weight of the metal block of dimension 5 cm×4 cm×3 cm is 1 kg.Its volume=length×breadth×height=(5×4×3) cm3=60 cm3i.e., the weight of 60 cm3 of the metal is 1 kgAgain, the dimension of the other block which is of same metal is 15 cm×8 cm×3 cm.Its volume=length×breadth×height=(15×8×3) cm3=360 cm3 The weight of the required block =360 cm3                                            =6×60 cm3 ( Weight of 60 cm3 of the metal is 1Kg)                                            =6×1 kg                                             =6 kg

Page No 21.9:

Question 20:

How many soap cakes can be placed in a box of size 56 cm × 0.4 m × 0.25 m, if the size of a soap cake is 7 cm × 5 cm × 2.5 cm?

Answer:

Dimension of a soap cake = 7cm×5 cm×2.5 cmIts volume=length×breadth×height=(7×5×2.5) cm3=87.5 cm3Also, the dimension of the box that contains the soap cakes is 56 cm×0.4 m×0.25 m, i.e., 56 cm×40cm×25 cm ( 1 m = 100 cm).Volume of the box=length×breadth×height=(56×40×25) cm3=56000 cm3 The number of soap cakes that can be placed inside the box=volume of the boxvolume of a soap cake=56000 cm387.5 cm3=640

Page No 21.9:

Question 21:

The volume of a cuboidal box is 48 cm3. If its height and length are 3 cm and 4 cm respectively, find its breadth.

Answer:

Suppose that the breadth of the box is b cm.Volume of the cuboidal box=48 cm3Height of the box=3 cm  Length of the box=4 cmNow, volume of box=length×breadth×height48=4×b×348=12×bb=4812=4 cm The breadth of the cuboidal box is 4 cm.



View NCERT Solutions for all chapters of Class 8