Rs Aggarwal 2020 2021 Solutions for Class 8 Maths Chapter 10 Profit And Loss are provided here with simple step-by-step explanations. These solutions for Profit And Loss are extremely popular among Class 8 students for Maths Profit And Loss Solutions come handy for quickly completing your homework and preparing for exams. All questions and answers from the Rs Aggarwal 2020 2021 Book of Class 8 Maths Chapter 10 are provided here for you for free. You will also love the ad-free experience on Meritnation’s Rs Aggarwal 2020 2021 Solutions. All Rs Aggarwal 2020 2021 Solutions for class Class 8 Maths are prepared by experts and are 100% accurate.

(ii)

(iii)

(iv)

(i)

(ii)

(iii)

(iv)

(ii)

(iii)

(iv)

#### Page No 134:

CP of the iron safe = ₹12,160
Money spent on transportation = ₹340
Total CP = ₹12,160 + ₹340 = ₹12,500
SP of the iron safe = ₹12,875
Profit = SP − CP = ₹12,875 − ₹12,500 = ₹375
∴ Profit% = $\frac{\mathrm{Profit}}{\mathrm{CP}}×100%$$=\frac{375}{12500}×100%=3%$

#### Page No 134:

Total cost of rice of 1st variety = ₹36/kg × 20 kg = ₹720
Total cost of rice of 2nd variety = ₹32/kg × 25 kg = ₹800
Total cost of the two rice varieties = ₹720 + ₹800 = ₹1,520
Total quantity of the two rice varieties = 20 kg + 25 kg = 45 kg
Selling price of the mixture of two rice = ₹38/kg × 45 kg = ₹1,710
Gain = SP − CP = ₹1,710 − ₹1,520 = ₹190
Gain% = $\frac{\mathrm{Gain}}{\mathrm{CP}}×100%=\frac{190}{1520}×100%=12\frac{1}{2}%$

#### Page No 134:

It is given that,
Gain = SP of 5 cassettes                 .....(1)
Gain = SP of 130 cassettes − CP of 130 cassettes
⇒ SP of 5 cassettes = SP of 130 cassettes − CP of 130 cassettes               [From (1)]
⇒ CP of 130 cassettes = SP of 125 cassettes          .....(2)
Let the CP of 1 cassettte be ₹x.
∴ CP of 125 cassettes = ₹125x
CP of 130 cassettes = ₹130x
SP of 125 cassettes = CP of 130 cassettes                    [From (2)]
⇒ SP of 125 cassettes = ₹130x
Now, gain% $=\frac{\mathrm{SP}-\mathrm{CP}}{\mathrm{CP}}×100%=\frac{\left(130x-125x\right)}{125x}×100%$$=\frac{5x}{125x}×100%=4%$
Thus, the gain percent is 4%.

#### Page No 134:

LCM of 6 and 4 = 12
Let the number of oranges bought be 12.
CP of 6 oranges = ₹20
So, CP of 1 orange = $\frac{20}{6}=₹\frac{10}{3}$
CP of 12 orange = $12×\frac{10}{3}=₹40$
SP of 4 oranges = ₹18
SP of 1 orange = $\frac{18}{4}=₹\frac{9}{2}$
SP of 12 oranges = $12×\frac{9}{2}=₹54$
Here, SP of 12 oranges > CP of 12 oranges.
Profit = SP − CP = ₹54 − ₹40 = ₹14
∴ Profit% = $\frac{\mathrm{Profit}}{\mathrm{CP}}×100%=\frac{14}{40}×100%=35%$

#### Page No 134:

LCM of 12 and 10 = 60
Let the number of banana bought be 60.
CP of 12 banana = ₹40
∴ CP of 1 banana = $\frac{40}{12}=₹\frac{10}{3}$
⇒ CP of 60 bananas = $60×\frac{10}{3}=₹200$
SP of 10 bananas = ₹36
∴ SP of 1 banana = $\frac{36}{10}=₹\frac{18}{5}$
⇒ SP of 60 bananas = $60×\frac{18}{5}=₹216$
Here, SP of 60 bananas > CP of 60 bananas.
Profit = SP − CP = ₹216 − ₹200 = ₹16
∴ Profit% = $\frac{\mathrm{Profit}}{\mathrm{CP}}×100%=\frac{16}{200}×100=8%$

#### Page No 134:

LCM of 10 and 12 = 60
Let the number of apples bought be 60.
CP of 10 oranges = ₹75
∴ CP of 1 orange = $₹\frac{75}{10}$
⇒ CP of 60 orange = $60×\frac{75}{10}=₹450$
SP of 12 oranges = ₹75
∴ SP of 1 orange = $₹\frac{75}{12}$
⇒ SP of 60 oranges = $60×\frac{75}{12}=₹375$
Here, CP of 60 oranges > SP of 60 oranges.
Loss = CP − SP = ₹450 − ₹375 = ₹75
∴ Loss% = $\frac{\mathrm{Loss}}{\mathrm{CP}}×100%=\frac{75}{450}×100%=16\frac{2}{3}%$

#### Page No 134:

Let the number of eggs purchased be x.
CP of 3 eggs = ₹16
∴ CP of 1 egg = $₹\frac{16}{3}$
⇒ CP of x eggs = $₹\frac{16}{3}x$
SP of 5 eggs = ₹36
∴ SP of 1 egg = $₹\frac{36}{5}$
⇒ SP of x eggs = $₹\frac{36}{5}x$
Gain = SP − CP = ₹168
$\therefore \frac{36}{5}x-\frac{16}{3}x=168\phantom{\rule{0ex}{0ex}}⇒\frac{28}{15}x=168\phantom{\rule{0ex}{0ex}}⇒x=\frac{168×15}{28}\phantom{\rule{0ex}{0ex}}⇒x=90$
Hence, the man purchased 90 eggs.

#### Page No 135:

Let the cost price be ₹x.
Loss = 10% of ₹x = $\frac{10}{100}x=₹\frac{x}{10}$
SP in case of loss = CP − Loss = $x-\frac{x}{10}=₹\frac{9x}{10}$
Gain =10% of ₹x = $\frac{10}{100}x=₹\frac{x}{10}$
SP in case of profit = CP + Profit = $x+\frac{x}{10}=₹\frac{11x}{10}$
It is given that dealer gets ₹940 more if sold at a profit of 10% instead of loss of 10%.
∴ SP in case of profit − SP in case of loss = ₹940
$⇒\frac{11x}{10}-\frac{9x}{10}=940\phantom{\rule{0ex}{0ex}}⇒\frac{2x}{10}=940\phantom{\rule{0ex}{0ex}}⇒x=4700$
Hence, the cost price of the table is ₹4,700.

#### Page No 135:

Let the CP be ₹x.
SP when gain is 10% = $x+\frac{10}{100}x=₹\frac{110}{100}x$
SP when gain is 14% = $x+\frac{14}{100}x=₹\frac{114}{100}x$
Difference in SP = SP when gain is 14% − SP when gain is 10% = ₹260
$\therefore \frac{114x}{100}-\frac{110x}{100}=260\phantom{\rule{0ex}{0ex}}⇒\frac{4x}{100}=260\phantom{\rule{0ex}{0ex}}⇒x=6500$
Hence, the CP of the cycle is ₹6,500.

#### Page No 135:

40 kg of wheat is bought for ₹12.50/kg.
∴ CP of 40 kg of wheat = 40 × 12.50 = ₹500
30 kg of wheat is bought for ₹14/kg.
∴ CP of 30 kg of wheat = 30 × 14 = ₹420
Total CP = ₹500 + ₹420 = ₹920
Profit = 5% of CP = 5% of ₹920 = $\frac{5}{100}×920=₹46$
Let the SP be ₹x.
Profit = SP − CP
x − 920 = 46
x = ₹966
SP of 70 kg wheat = ₹966
∴ SP of 1 kg wheat = $\frac{966}{70}=₹13.80$
Thus, the selling price of the mixture is ₹13.80/kg.

#### Page No 135:

CP of the first bat = ₹840
Profit% on the first bat = 15%
∴ Profit = 15% of ₹840 = $\frac{15}{100}×840=₹126$
SP of the first bat = ₹840 + ₹126 = ₹966
CP of the second bat = ₹360
Loss = 5% of ₹360 = $\frac{5}{100}×360=₹18$
SP of the second bat = ₹360 − ₹18 = ₹342
Total CP of two bats = CP of first bat + CP of second bat = ₹840 + ₹360 = ₹1,200
Total SP of two bats = SP of first bat + SP of second bat = ₹966 + ₹342 = ₹1,308
Here, Total SP of two bats > Total CP of two bats.
Gain = Total SP of two bats − Total CP of two bats = ₹1,308 − ₹1,200 = ₹108
∴ Gain% in the whole transaction$=\frac{108}{1200}×100=9%$

#### Page No 135:

CP of first jeans = ₹1,450
Profit = 8% of CP = $\frac{8}{100}×1450=₹116$
SP of first jeans = ₹1,450 + ₹116 = ₹1,566
CP of second jeans = ₹1,450
Loss = 4% of CP = $\frac{4}{100}×1450=₹58$
SP of second jeans = ₹1450 − ₹58 = ₹1,392
Total CP of two jeans = CP of first jeans + CP of second jeans = ₹1,450 + ₹1,450 = ₹2,900
Total SP of two jeans = SP of first jeans + SP of second jeans = ₹1,566 + ₹1,392 = ₹2,958
Here, Total SP of two jeans > Total CP of two jeans.
Gain = Total SP of two jeans − Total CP of two jeans = ₹2,958 − ₹2,900 = ₹58
∴ Gain% =

#### Page No 135:

CP of 1 kg of rice = Rs 25
C.P of 200 kg rice=
CP of 80 kg of rice=

CP of 40 kg of rice =

Remaining quantity of rice = (200 − 80 + 40) kg = 80 kg

​SP of the remaining rice (80 kg) = Rs (5400 − 2200 − 960)
= Rs 2240

#### Page No 135:

Let the CP of the TV set be ₹x.
SP of the TV set = $\frac{6}{5}\mathrm{CP}=₹\frac{6}{5}x$
Gain = SP of the TV set − CP of the TV set = $\frac{6}{5}x-x=₹\frac{x}{5}$
Gain% = $\frac{\mathrm{Gain}}{\mathrm{CP}}×100%=\frac{\frac{x}{5}}{x}×100%=\frac{100}{5}%=20%$

#### Page No 135:

Let the CP of the flower vase set be ₹x.
SP of the flower vase = $\frac{5}{6}\mathrm{CP}=₹\frac{5}{6}x$
Loss = CP − SP = $x-\frac{5}{6}x=₹\frac{x}{6}$
Loss% = $\frac{\mathrm{Loss}}{\mathrm{CP}}×100%=\frac{\frac{x}{6}}{x}×100%=\frac{100}{6}%=\frac{50}{3}%=16\frac{2}{3}%$

#### Page No 135:

SP of the bouquet = Rs 322
Gain percentage = 15%

Now, CP = Rs 128 and desired gain percentage = 25%

​Hence, the selling price to obtain the desired gain must be Rs 350.

#### Page No 135:

Let the CP of the umbrella be ₹x.
SP of the umbrella = ₹336
Loss = 4% of ₹x = $₹\frac{4}{100}x$
CP − Loss = SP
$⇒x-\frac{4}{100}x=336\phantom{\rule{0ex}{0ex}}⇒\frac{96}{100}x=336\phantom{\rule{0ex}{0ex}}⇒x=₹350$
∴ CP of the umbrella = ₹350
Now, for gain of 4%,
SP = CP + Gain
$⇒\mathrm{SP}=350+\frac{4}{100}×350\phantom{\rule{0ex}{0ex}}⇒\mathrm{SP}=350+14\phantom{\rule{0ex}{0ex}}⇒\mathrm{SP}=₹364$
Hence, in order to gain 4%, the umbrella should be sold for ₹364.

#### Page No 135:

Let the original price be $x$.
SP = Rs 3120
Now, SP = CP − loss
$⇒3120=x-\frac{4}{\frac{100}{x}}\phantom{\rule{0ex}{0ex}}⇒3120=x-\frac{x}{25}\phantom{\rule{0ex}{0ex}}⇒3120=\frac{24x}{25}\phantom{\rule{0ex}{0ex}}⇒\frac{3120×25}{24}=x\phantom{\rule{0ex}{0ex}}⇒x=3250\phantom{\rule{0ex}{0ex}}$

So, the cost price is Rs 3250.

If it is sold for Rs 3445, then its a gain because SP > CP.
Now, gain = SP − CP
= Rs (3445 − 3250)
= Rs 195

Hence, gain percent = 6%

#### Page No 135:

SP of first saree = ₹1,980
Loss = 10%
Let the CP of first saree be ₹x.
CP = Loss + SP
$⇒\frac{10}{100}×x+1980=x\phantom{\rule{0ex}{0ex}}⇒x-\frac{10}{100}x=1980\phantom{\rule{0ex}{0ex}}⇒\frac{90}{100}x=1980\phantom{\rule{0ex}{0ex}}⇒x=2200$
∴ CP of first saree = ₹2,200
SP of second saree = ₹1,980
Gain = 10%
Let the CP of second saree be ₹y.
CP = SP − Gain
$⇒1980-\frac{10}{100}×y=y\phantom{\rule{0ex}{0ex}}⇒1980-\frac{y}{10}=y\phantom{\rule{0ex}{0ex}}⇒y+\frac{y}{10}=1980\phantom{\rule{0ex}{0ex}}⇒\frac{11y}{10}=1980\phantom{\rule{0ex}{0ex}}⇒y=1800$
∴ CP of second saree = ₹1,800
Total CP of two sarees = CP of first saree + CP of second saree = ₹2,200 + ₹1,800 = ₹4,000
Total SP of two sarees = SP of first saree + SP of second saree = ₹1,980 + ₹1,980 = ₹3,960
Here, Total CP of two sarees > Total SP of two sarees
Loss = Total CP of two sarees − Total SP of two sarees = ₹4,000 − ₹3,960 = ₹40
∴ Loss% in the whole transaction

#### Page No 135:

SP of first fan = ₹1,140
Gain = 14%
Let the CP of first fan be ₹x.
CP = SP − Gain
$⇒x=1140-\frac{14}{100}x\phantom{\rule{0ex}{0ex}}⇒x+\frac{14}{100}x=1140\phantom{\rule{0ex}{0ex}}⇒\frac{114}{100}x=1140\phantom{\rule{0ex}{0ex}}⇒x=1000$
∴ CP of first fan = ₹1,000
SP of second fan = ₹1,140
Loss = 5%
Let the CP of second fan be ₹y.
CP = Loss + SP
$⇒y=\frac{5}{100}y+1140\phantom{\rule{0ex}{0ex}}⇒y-\frac{5}{100}y=1140\phantom{\rule{0ex}{0ex}}⇒\frac{95}{100}y=1140\phantom{\rule{0ex}{0ex}}⇒y=1200$
∴ CP of second fan = ₹1,200
Total CP of two fans = CP of first fan + CP of second fan = ₹1,000 + ₹1,200 = ₹2,200
Total SP of two fans = SP of first fan + SP of second fan = ₹1,140 + ₹1,140 = ₹2,280
Here, Total SP of two fans > Total CP of two fans
Gain = Total SP of two fans − Total CP of two fans = ₹2,280 − ₹2,200 = ₹80
∴ Gain% on whole transaction

#### Page No 135:

Let the CP of the watch for Vinod be ₹x.
SP = Gain + CP

Now,
SP of the water for Vinod will be the CP of the watch for Arun.
SP of the watch for Arun
= CP − Loss

SP of the watch for Arun will be the CP of the watch for Manoj.
But, CP of the watch for Manoj = ₹3,990
So,
$\frac{112}{100}x\left(\frac{95}{100}\right)=3990$
$⇒x=\frac{3990×100×100}{112×95}=3750$
Thus, Vinod paid ₹3,750 for the watch.

#### Page No 135:

CP of the plot of land = ₹4,80,000
CP of $\frac{2}{5}$th of the land = $\frac{2}{5}×480000=₹1,92,000$
Loss on $\frac{2}{5}$th of the land = 6%
SP of $\frac{2}{5}$th of the land = CP − Loss
$=192000-\frac{6}{100}×192000\phantom{\rule{0ex}{0ex}}=₹1,80,480$
CP of $\frac{3}{5}$th of the land = 480000 − 192000 = ₹2,88,000
Total gain% = 10%
Total gain = $\frac{10}{100}×480000=₹48,000$
Total SP = CP + Gain = ₹4,80,000 + ₹48,000 = ₹5,28,000
SP of $\frac{3}{5}$th of the land = ₹5,28,000 − ₹1,80,480 = ₹3,47,520
Gain on $\frac{3}{5}$th of the land = SP of $\frac{3}{5}$th land − CP of $\frac{3}{5}$th land
= ₹3,47,520 − ₹2,88,000
= ₹59,520
Gain% on seling the remaining part of the plot =

#### Page No 135:

CP of sugar = Rs 4500
Profit on one-third of the sugar = 10%

CP of one-third of the sugar = Rs

Now, profit= Rs (1650 − 1500) = Rs 150

At a profit of 12%, we have:

∴ Gain= Rs (5040 − 4500) = Rs 5400

Profit on the remaining amount of sugar = Rs (540 − 150) = Rs 390
CP of the remaining sugar = Rs (4500 − 1500) = Rs 3000

Therefore, the profit on the remaining amount of sugar is 13%.

#### Page No 138:

Marked price =  and discount = 18%
Discount = 18% of marked price

Selling price = marked price − discount

Therefore, the selling price of the cooler is .

#### Page No 138:

Marked Price = Rs 960
Selling Price = Rs 816
Discount = MP − SP
= Rs (960 − 816)
= Rs 144

Therefore, the discount on the sweater is 15%.

#### Page No 138:

SP of the shirt = ₹1,092
Discount = ₹208
MP = SP + Discount = ₹1,092 + ₹208 = ₹1,300
∴ Rate of discount = $\frac{\mathrm{Discount}}{\mathrm{MP}}×100%=\frac{208}{1300}×100%=16%$

#### Page No 138:

Selling Price = Rs 216.20
Rate of discount = 8%
Marked Price = ?
SP = MP − discount
Let the MP be Rs $x$.

∴ Marked price =

#### Page No 138:

Cost price = Rs 528
Rate of discount = 12%
Marked price = ?
SP= MP − discount
Let the MP be Rs $x$.

Therefore, the marked price of tea set is Rs 600.

#### Page No 138:

Let Rs 100 be the CP.
Then, marked price =
Discount = 20% of MP
$=\frac{20}{100}×135\phantom{\rule{0ex}{0ex}}=27$
Selling price = marked price − discount
= 135 − 27
= Rs 108
Now, gain = SP − CP
=108 − 100
=Rs 8

=

#### Page No 138:

Let Rs 100 be the CP.
Then, marked price =
Discount = 30% of MP
$=\frac{30}{100}×140\phantom{\rule{0ex}{0ex}}=42$
Selling Price = marked price − discount
= 140 − 42
= Rs 98
Now, loss = CP − SP
= 100 − 98
= Rs 2

Therefore, the shopkeeper had a loss of 2%.

#### Page No 138:

Cost price of the fan =
Gain percentage = 25%

Let the marked price be Rs $x$.
Discount = 25% of

$=\frac{25x}{100}$

SP = MP − discount
⇒ 1350 = $X$ − $\frac{25X}{100}$

$⇒1350=\frac{100x-25x}{100}\phantom{\rule{0ex}{0ex}}⇒135000=75x⇒x=\frac{13500}{75}⇒x=1800$

Therefore, the marked price of the fan is .

#### Page No 138:

Cost price of the refrigerator =
Gain percentage = 20%.

Let the marked price be Rs $x$.
Discount = 16% of
$=\frac{16x}{100}$
S.P = MP − Discount
⇒ 13818 = x − $\frac{16x}{100}$

$⇒13818=\frac{100x-16x}{100}\phantom{\rule{0ex}{0ex}}⇒1381800=84x⇒x=\frac{1381800}{84}⇒x=16450$

​Therefore, the marked price of the refrigerator is .

#### Page No 138:

The cost price of the ring is .
Gain percentage = 20%.

Let the marked price be $x$.
Discount = 16% of
$=\frac{16x}{100}$
SP = MP − Discount

$⇒1428=x-\frac{16x}{100}\phantom{\rule{0ex}{0ex}}⇒1428=\frac{100x-16x}{100}\phantom{\rule{0ex}{0ex}}⇒142800=84x\phantom{\rule{0ex}{0ex}}⇒\frac{142800}{84}=x\phantom{\rule{0ex}{0ex}}⇒x=1700$

​Therefore, the marked price of the ring is .

#### Page No 138:

Let be the cost price.
Gain required = 17%
∴ Selling price =
Let the marked price be .
Then, discount = 10% of x
$=\frac{10}{100}×x\phantom{\rule{0ex}{0ex}}=\frac{x}{10}$
Selling Price = MP − discount
$⇒117=x-\frac{x}{10}\phantom{\rule{0ex}{0ex}}⇒117=\frac{9x}{10}$

$⇒9x=1170\phantom{\rule{0ex}{0ex}}⇒x=\frac{1170}{9}\phantom{\rule{0ex}{0ex}}⇒x=130$

∴ Marked price =

Hence, the marked price is 30% above the cost price.

#### Page No 138:

Let be the cost price.
Gain required = 8%
Therefore, the selling price is .
Let be the marked price.
Then, discount = 10% of x
$=\frac{10}{100}×x\phantom{\rule{0ex}{0ex}}=\frac{x}{10}$
Selling Price = MP − discount
$⇒117=x-\frac{x}{10}\phantom{\rule{0ex}{0ex}}⇒117=\frac{9x}{10}$

$⇒9x=1080\phantom{\rule{0ex}{0ex}}⇒x=\frac{1080}{9}\phantom{\rule{0ex}{0ex}}⇒x=120$

∴ Marked price =

Hence, the marked price is 20% above the cost price.

#### Page No 138:

Marked price of the TV = Rs 18500
First discount = 20%

Price after the first discount = Rs (18500 − 3700)= Rs 14800
Second discount = 5% of 14800
$=\frac{5}{100}×14800\phantom{\rule{0ex}{0ex}}=740$
Price after the second discount = (14800 − 740)
= Rs 14060
The TV is available for

#### Page No 138:

​Let the marked price of the article be Rs 100.
First discount = 20%
Price after the first discount = (100 − 20) = Rs 80
Second discount = 5% of 80

Price after the second discount = (80 − 4) = Rs 76
Net selling price = Rs 76
∴ Single discount equivalent to the given successive discounts = (100 − 76)% = 24%

#### Page No 139:

List price of the refrigerator = Rs 14650
Sales tax = 6% of ​Rs 14650

Bill amount

Hence, the cost of the refrigerator is Rs 15,529.

#### Page No 139:

(i)

$=\mathrm{Rs}.\left(250×\frac{6}{100}\right)\phantom{\rule{0ex}{0ex}}=\mathrm{Rs}.15$

$=\mathrm{Rs}.265$

(ii)

$=\mathrm{Rs}.\left(625×\frac{4}{100}\right)\phantom{\rule{0ex}{0ex}}=\mathrm{Rs}.25$

$=\mathrm{Rs}.473$

$=\mathrm{Rs}.1269$

#### Page No 139:

Let the original price of the watch be Rs x.
VAT = 10% of Rs x

∴ Price including VAT =

Now, $\frac{11x}{10}=1980$

Hence, the original price of the watch is Rs 1,800.

#### Page No 139:

​​Let the original price of the shirt be Rs x.
VAT = 7% of Rs x
$=\mathrm{Rs}.\left(x×\frac{7}{100}\right)\phantom{\rule{0ex}{0ex}}=\mathrm{Rs}.\frac{7x}{100}$
∴ Price including VAT = $\mathrm{Rs}.\left(x+\frac{7x}{100}\right)$
$=\mathrm{Rs}.\frac{107x}{100}$
Now, $\frac{107x}{100}=1337.50$

Hence, the original price of the shirt is Rs 1,250.

#### Page No 139:

Let the price of 10 g of gold be Rs x.

∴ Price including VAT $=\mathrm{Rs}.\left(x+\frac{x}{100}\right)$

Hence, the price of 10 g of gold is Rs 15,600.

#### Page No 139:

Let the original price of the computer be Rs x.

∴ Price including VAT$=\mathrm{Rs}.\left(x+\frac{4x}{100}\right)$
$=\mathrm{Rs}.\frac{104x}{100}$

∴ The original price of the computer is Rs 36,500

#### Page No 139:

​Let the original cost of the spare parts be Rs x.

∴ Price including VAT $=\mathrm{Rs}.\left(x+\frac{12x}{100}\right)$
$=\mathrm{Rs}.\frac{112x}{100}$

Hence, ​the original cost of the spare parts is Rs 18,550.

#### Page No 139:

​Let the list price of the TV set be Rs x.

∴ Price including VAT $=\mathrm{Rs}.\left(x+\frac{8x}{100}\right)\phantom{\rule{0ex}{0ex}}$
$=\mathrm{Rs}.\frac{108x}{100}$

Hence, the list price of the TV set is Rs 25,000.

#### Page No 139:

Let the rate of VAT be x%. Then, we have:

∴ The rate of VAT is 5%.

#### Page No 139:

Let the rate of VAT be x%. Then, we have:

∴ The rate of VAT is 8%.

#### Page No 139:

Let the rate of VAT be x%. Then, we have:

∴ The rate of VAT is 12.5%.

#### Page No 140:

#### Page No 140:

(c) 120%

Let the SP and CP of the article be Rs x and y, respectively.
Gain percentage = 10%
⇒ 10 = $\frac{x-y}{y}×100$
⇒ y = $\frac{10x}{11}$

According to the question, we have:

SP = Rs 2x
∴ Gain percentage = $\frac{\mathrm{gain}}{\mathrm{CP}}×100\phantom{\rule{0ex}{0ex}}$

$=\frac{2x-\frac{10x}{11}}{\frac{10x}{11}}×100\phantom{\rule{0ex}{0ex}}=\frac{12}{10}×100\phantom{\rule{0ex}{0ex}}=120%$

(d) 125%

#### Page No 140:

(c) 20%

$=\left(\frac{2x}{10x}×100\right)%\phantom{\rule{0ex}{0ex}}=20%$

(b) 25%

#### Page No 140:

(d) 150%

​
$=Rs.5$

#### Page No 140:

(d) 25%

​

​(a) 4%

(a) 20%

#### Page No 140:

​ (b) Rs.1200

$=\mathrm{Rs}.\left\{\frac{\left(100+25\right)}{100}×960\right\}\phantom{\rule{0ex}{0ex}}=\mathrm{Rs}.\left(\frac{125}{100}×960\right)\phantom{\rule{0ex}{0ex}}=\mathrm{Rs}.1200$

(a) 5%

#### Page No 140:

(a) 1.5% gain

​
$=\mathrm{Rs}.\left\{\frac{100}{\left(100+20\right)}×500\right\}\phantom{\rule{0ex}{0ex}}=\mathrm{Rs}.\left(\frac{100}{120}×500\right)\phantom{\rule{0ex}{0ex}}=\mathrm{Rs}.416.67$

$=\mathrm{Rs}.\left\{\frac{100}{\left(100-12\right)}×500\right\}\phantom{\rule{0ex}{0ex}}=\mathrm{Rs}.\left(\frac{100}{88}×500\right)\phantom{\rule{0ex}{0ex}}=\mathrm{Rs}.568.18$

$=Rs.984.85$

$=Rs.1000$

(b) Rs 530

#### Page No 141:

​(c) Rs 198

$=\mathrm{Rs}.\left\{\frac{\left(100+20\right)}{100}×165\right\}\phantom{\rule{0ex}{0ex}}=\mathrm{Rs}.\left(\frac{120}{100}×165\right)\phantom{\rule{0ex}{0ex}}=\mathrm{Rs}.198$

(a)​ Rs. 50

​(b) 8%

​(c) 1% loss

#### Page No 141:

(c) Rs.750

$=Rs.\frac{11x}{10}\phantom{\rule{0ex}{0ex}}$

$⇒x=\left(825×\frac{10}{11}\right)\phantom{\rule{0ex}{0ex}}⇒x=750$

∴ The basic price of the watch is Rs 750.

#### Page No 142:

$=\mathrm{Rs}.\left\{\frac{100}{\left(100+15\right)}×322\right\}\phantom{\rule{0ex}{0ex}}=\mathrm{Rs}.\left(\frac{100}{115}×322\right)\phantom{\rule{0ex}{0ex}}=\mathrm{Rs}.280$

$=\mathrm{Rs}.\left\{\frac{\left(100+20\right)}{100}×280\right\}\phantom{\rule{0ex}{0ex}}=\mathrm{Rs}.\left(\frac{120}{100}×280\right)\phantom{\rule{0ex}{0ex}}=\mathrm{Rs}.336$

∴ The desired selling price is Rs 336.

#### Page No 142:

#### Page No 142:

$=Rs.80$

$=\mathrm{Rs}.72$

$=28%$

#### Page No 142:

​
$=\mathrm{Rs}.\frac{11x}{10}$

$⇒x=\left(1870×\frac{10}{11}\right)\phantom{\rule{0ex}{0ex}}⇒x=1700$

#### Page No 142:

(b) 25%
​

(d) 25%

(b) 20%

#### Page No 142:

(c) Rs.920

$=\mathrm{Rs}.\left\{\frac{100}{\left(100-15\right)}×680\right\}\phantom{\rule{0ex}{0ex}}=\mathrm{Rs}.\left(\frac{100}{85}×680\right)\phantom{\rule{0ex}{0ex}}=\mathrm{Rs}.800$

​(c) 8%

#### Page No 142:

​(c) Rs.750

$=Rs.\frac{108x}{100}$

$⇒x=\left(810×\frac{100}{108}\right)\phantom{\rule{0ex}{0ex}}⇒x=750$

#### Page No 142:

​(i) The discount is reckoned on the marked price.
(ii) Gain or loss is always reckoned on the cost price.
(iii) SP = (Marked price) − (Discount).
(iv) VAT is charged on the selling price of the article.

#### Page No 142:

​(i) False (F)

$\mathrm{SP}=\left\{\frac{\left(100-\mathrm{loss}%\right)}{100}×\mathrm{CP}\right\}$

(ii) True (T)

(iii) False (F)
Gain is reckoned on the cost price.

(iv) True (T)

View NCERT Solutions for all chapters of Class 8